目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
7.1 雪荷载标准值及基本雪压
7.1.1 屋面水平投影面上的雪荷载标准值应按下式计算:
71.2 基本雪压应采用按本规范规定的方法确定的50年重现期的雪压;对雪荷载敏感的结构,应采用100年重现期的雪压。
7.1.3 全国各城市的基本雪压值应按本规范附录E中表E.5重现期R为50年的值采用。当城市或建设地点的基本雪压值在本规范表E.5中没有给出时,基本雪压值应按本规范附录E规定的方法,根据当地年最大雪压或雪深资料,按基本雪压定义,通过统计分析确定,分析时应考虑样本数量的影响。当地没有雪压和雪深资料时,可根据附近地区规定的基本雪压或长期资料,通过气象和地形条件的对比分析确定;也可比照本规范附录E中附图E.6.1全国基本雪压分布图近似确定。
7.1.4 山区的雪荷载应通过实际调查后确定。当无实测资料时,可按当地邻近空旷平坦地面的雪荷载值乘以系数1.2采用。
7.1.5 雪荷载的组合值系数可取0.7;频遇值系数可取0.6;准永久值系数应按雪荷载分区I、Ⅱ和Ⅲ的不同,分别取0.5、0.2和0;雪荷载分区应按本规范附录E.5或附图E.6.2的规定采用。
7.1.2 基本雪压的确定方法和重现期直接关系到当地基本雪压值的大小,因而也直接关系到建筑结构在雪荷载作用下的安全,必须以强制性条文作规定。确定基本雪压的方法包括对雪压观测场地、观测数据以及统计方法的规定,重现期为50年的雪压即为传统意义上的50年一遇的最大雪压,详细方法见本规范附录E。对雪荷载敏感的结构主要是指大跨、轻质屋盖结构,此类结构的雪荷载经常是控制荷载,极端雪荷载作用下的容易造成结构整体破坏,后果特别严重,应此基本雪压要适当提高,采用100年重现期的雪压。
本规范附录E表E.5中提供的50年重现期的基本雪压值是根据全国672个地点的基本气象台(站)的最大雪压或雪深资料,按附录E规定的方法经统计得到的雪压。本次修订在原规范数据的基础上,补充了全国各台站自1995年至2008年的年极值雪压数据,进行了基本雪压的重新统计。根据统计结果,新疆和东北部分地区的基本雪压变化较大,如新疆的阿勒泰基本雪压由1.25增加到1.65,伊宁由1.0增加到1.4,黑龙江的虎林由0.7增加到1.4。近几年西北、东北及华北地区出现了历史少见的大雪天气,大跨轻质屋盖结构工程因雪灾遭受破坏的事件时有发生,应引起设计人员的足够重视。
我国大部分气象台(站)收集的都是雪深数据,而相应的积雪密度数据又不齐全。在统计中,当缺乏平行观测的积雪密度时,均以当地的平均密度来估算雪压值。
各地区的积雪的平均密度按下述取用:东北及新疆北部地区的平均密度取150kg/m3;华北及西北地区取130kg/m3,其中青海取120kg/m3;淮河、秦岭以南地区一般取150kg/m3,其中江西、浙江取200kg/m3。
年最大雪压的概率分布统一按极值Ⅰ型考虑,具体计算可按本规范附录E的规定。我国基本雪压分布图具有如下特点:
1)新疆北部是我国突出的雪压高值区。该区由于冬季受北冰洋南侵的冷湿气流影响,雪量丰富,且阿尔泰山、天山等山脉对气流有阻滞和抬升作用,更利于降雪。加上温度低,积雪可以保持整个冬季不融化,新雪覆老雪,形成了特大雪压。在阿尔泰山区域雪压值达1.65kN/m2。
2)东北地区由于气旋活动频繁,并有山脉对气流的抬升作用,冬季多降雪天气,同时因气温低,更有利于积雪。因此大兴安岭及长白山区是我国又一个雪压高值区。黑龙江省北部和吉林省东部的广泛地区,雪压值可达0.7kN/m2以上。但是吉林西部和辽宁北部地区,因地处大兴安岭的东南背风坡,气流有下沉作用,不易降雪,积雪不多,雪压不大。
3)长江中下游及淮河流域是我国稍南地区的一个雪压高值区。该地区冬季积雪情况不很稳定,有些年份一冬无积雪,而有些年份在某种天气条件下,例如寒潮南下,到此区后冷暖空气僵持,加上水汽充足,遇较低温度,即降下大雪,积雪很深,也带来雪灾。1955年元旦,江淮一带降大雪,南京雪深达51cm,正阳关达52cm,合肥达40cm。1961年元旦,浙江中部降大雪,东阳雪深达55cm,金华达45cm。江西北部以及湖南一些地点也会出现(40~50)cm以上的雪深。因此,这一地区不少地点雪压达(0.40~0.50)kN/m2。但是这里的积雪期是较短的,短则1、2天,长则10来天。
4)川西、滇北山区的雪压也较高。因该区海拔高,温度低,湿度大,降雪较多而不易融化。但该区的河谷内,由于落差大,高度相对低和气流下沉增温作用,积雪就不多。
5)华北及西北大部地区,冬季温度虽低,但水汽不足,降水量较少,雪压也相应较小,一般为(0.2~0.3)kN/m2。西北干旱地区,雪压在0.2kN/m2以下。该区内的燕山、太行山、祁连山等山脉,因有地形的影响,降雪稍多,雪压可在0.3kN/m2以上。
6)南岭、武夷山脉以南,冬季气温高,很少降雪,基本无积雪。
对雪荷载敏感的结构,例如轻型屋盖,考虑到雪荷载有时会远超过结构自重,此时仍采用雪荷载分项系数为1.40,屋盖结构的可靠度可能不够,因此对这种情况,建议将基本雪压适当提高,但这应由有关规范或标准作具体规定。
7.1.4 对山区雪压未开展实测研究仍按原规范作一般性的分析估计。在无实测资料的情况下,规范建议比附近空旷地面的基本雪压增大20%采用。
说明 返回
顶部
- 上一节:7 雪荷载
- 下一节:7.2 屋面积雪分布系数
目录导航
- 前言
- 1 总则
- 2 术语和符号
- 2.1 术语
- 2.2 符号
- 3 荷载分类和荷载组合
- 3.1 荷载分类和荷载代表值
- 3.2 荷载组合
- 4 永久荷载
- 5 楼面和屋面活荷载
- 5.1 民用建筑楼面均布活荷载
- 5.2 工业建筑楼面活荷载
- 5.3 屋面活荷载
- 5.4 屋面积灰荷载
- 5.5 施工和检修荷载及栏杆荷载
- 5.6 动力系数
- 6 吊车荷载
- 6.1 吊车竖向和水平荷载
- 6.2 多台吊车的组合
- 6.3 吊车荷载的动力系数
- 6.4 吊车荷载的组合值、频遇值及准永久值
- 7 雪荷载
- 7.1 雪荷载标准值及基本雪压
- 7.2 屋面积雪分布系数
- 8 风荷载
- 8.1 风荷载标准值及基本风压
- 8.2 风压高度变化系数
- 8.3 风荷载体型系数
- 8.4 顺风向风振和风振系数
- 8.5 横风向和扭转风振
- 8.6 阵风系数
- 9 温度作用
- 9.1 一般规定
- 9.2 基本气温
- 9.3 均匀温度作用
- 10 偶然荷载
- 10.1 一般规定
- 10.2 爆炸
- 10.3 撞击
- 附录A 常用材料和构件的自重
- 附录B 消防车活荷载考虑覆土厚度影响的折减系数
- 附录C 楼面等效均布活荷载的确定方法
- 附录D 工业建筑楼面活荷载
- 附录E 基本雪压、风压和温度的确定方法
- E.1 基本雪压
- E.2 基本风压
- E.3 雪压和风速的统计计算
- E.4 基本气温
- E.5 全国各城市的雪压、风压和基本气温
- E.6 全国基本雪压、风压及基本气温分布图
- 附录F 结构基本自振周期的经验方式
- F.1 高耸结构
- F.2 高层建筑
- 附录G 结构振型系数的近似值
- 附录H 横风向及扭转风振的等效风荷载
- H.1 圆形截面结构横风向风振等效风荷载
- H.2 矩形截面结构横风向风振等效风荷载
- H.3 矩形截面结构扭转风振等效风荷载
- 附录J 高层建筑顺风向和横风向风振加速度计算
- J.1 顺风向风振加速度计算
- J.2 横风向风振加速度计算
- 本规范用词说明
- 引用标准名录
-
笔记需登录后才能查看哦~