目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
3.1 一般规定
3.1.1 循环冷却水处理方案应根据全厂水平衡方案、盐平衡方案,并结合全厂水处理工艺综合技术经济比较确定。设计方案应包括下列内容:
1 补充水来源、水量、水质及其处理方案;
2 设计浓缩倍数、阻垢缓蚀、清洗预膜处理方案及控制条件;
3 系统排水处理方案;
4 旁流水处理方案;
5微生物控制方案。
3.1.2 循环冷却水量应根据生产工艺的最大小时用水量确定。
3.1.3 补充水水质资料收集宜符合下列规定:
1 补充水为地表水,不宜少于一年的逐月水质全分析资料;
2 补充水为地下水,不宜少于一年的逐季水质全分析资料;
3 补充水为再生水,不宜少于一年的逐月水质全分析资料,包括再生水水源组成及其处理工艺等资料;
4 水质分析项目宜符合本规范附录A的要求,水质分析误差宜满足本规范附录B的规定。
3.1.4 补充水水质设计依据应采用水质分析数据平均值,并以最不利水质校核设备能力。
3.1.5 间冷开式系统循环冷却水换热设备的控制条件和指标应符合下列规定:
1 循环冷却水管程流速应大于1.0m/s;
2 循环冷却水壳程流速应大于0.3m/s;
3 设备传热面冷却水侧壁温不宜高于70℃,当被换热介质温度高于115℃时,宜采取热量回收措施后再使用循环冷却水冷却;
4 设备传热面水侧污垢热阻值不应大于3.44X10-4m2•K/W;
5 设备传热面水侧黏附速率不应大于15mg/(c㎡•月),炼油行业不应大于20mg/(c㎡•月);
6 碳钢设备传热面水侧腐蚀速率应小于0.075mm/a,铜合金和不锈钢设备传热面水侧腐蚀速率应小于0.005mm/a。
3.1.6 闭式系统设备传热面水侧污垢热阻值应小于0.86×10-4m2•K/W,腐蚀速率应符合本规范第3.1.5条第6款的规定。
3.1.7 间冷开式系统循环冷却水水质指标应根据补充水水质及换热设备的结构形式、材质、工况条件、污垢热阻值、腐蚀速率、被换热介质性质并结合水处理药剂配方等因素综合确定,并宜符合表3.1.7的规定。
表3.1.7 间冷开式系统循环冷却水水质指标
续表 3.1.7
续表 3.1.7
3.1.8 闭式系统循环冷却水水质指标应根据系统特性和用水设备的要求确定,并宜符合表3.1.8的规定。
表3.1.8 闭式系统循环冷却水水质指标
注:① 火力发电厂双水内冷机组共用循环系统和转子独立冷却水系统的电导率不应大于5.0μS/cm(25℃)。
② 双水内冷机组内冷却水含铜量不应大于40.0μg/L。
③ 仅对pH<8.0时进行控制。
④ 钢铁厂闭式系统的补充水宜为软化水,其余两系统宜为除盐水。
3.1.9 直冷系统循环冷却水水质指标应根据工艺要求并结合补充水水质、工况条件及药剂处理配方等因素综合确定,并宜符合表3.1.9的规定。
表3.1.9 直冷系统循环冷却水水质指标
3.1.10 间冷开式系统与直冷系统的钙硬度与全碱度之和大于1100mg/L(以CaCO3计)或稳定指数RSI小于3.3时,应加硫酸或进行软化处理。
3.1.11 间冷开式系统的设计浓缩倍数不宜小于5.0,且不应小于3.0;直冷开式系统的设计浓缩倍数不应小于3.0。浓缩倍数可按下式计算:
式中:N—浓缩倍数;
Qm一补充水量(m³/h);
Qb一排污水量(m³/h);
Qw—一风吹损失水量(m³/h)。
3.1.12 间冷开式系统的微生物控制指标宜符合下列规定:
1 异养菌总数不宜大于1×105CFU/mL;
2 生物黏泥量不宜大于3mL/m³。
条文说明
3.1.1 本条主要对循环冷却水处理方案设计的基本内容做出相应的规定。
3.1.2 循环冷却水用水量是由生产性质、产量、工艺流程、工况条件等决定的,因此用水量应按照生产工艺的要求确定,对于按最大小时用水量的规定,是出于保证生产能力的考虑。
3.1.3 本条对不同水源的补充水资料的收集、整理、校核作出相应规定。
从统计学的观点来看,数据年代越长则代表性越强,因此应尽量收集长时间的数据。
pH值是水质稳定性的重要数据之一,本规范附录B中的水质分析误差校核是保证水质分析的准确性。
3.1.4 本条规定主要是在补充水水质变化时,保证循环冷却水处理设备有足够的设计能力。
3.1.5 本条规定包括两个内容:一个是循环冷却水处理所要求具备的条件,即对换热设备内的水流速、壁温等做出规定;另一个是循环冷却水处理最终达到的特性指标,即对污垢热阻、腐蚀速率、黏附速率等做出规定。
关于换热设备的规定是根据目前国内能够广泛采用的药剂种类性能(包括聚磷酸盐、磷酸盐、聚丙烯酸盐、聚马来酸等)及其复合配方,参照国外经验,并结合国内一些工厂在生产运行中易于出现故障的换热器的工况条件而提出的。
对国内一些工厂的壳程换热器调查表明,流速低于0.3m/s的换热器普遍存在污垢和垢下腐蚀问题,流速越低问题就越突出。根据目前药剂处理的效能与壳程换热器设计流速选用的常规范围,流速不应低于0.3m/s,以保证处理效果。
当换热器水侧流速低于0.3m/s时,尤其在折流板的负压区容易产生污垢,降低了传热效果,而且还将导致垢下腐蚀。
在壳程换热器的结构上,由于几何形状的限制,要做到各个部位具有均一的流速是不可能的,即使设计计算的平均流速(认为是均一的)为0.3m/s,实际上个别部位,尤其是靠近管板、折流板的死角区流速远低于此值,因此发生的问题就更为严重。这一点已为很多工厂的生产实践所证实。在这种不利的工况下,药剂处理难以发挥其应有的效果。国外报道的经验也表明,在这种情况下,即使投加像铬酸盐这种效果很好的强缓蚀剂,其保护作用也变差,换热器仍过早地损坏。
对于管程换热器,管式交换器制造商协会(TEMA)标准和现行国家标准《热交换器》GB/T 151规范中水的污垢热阻值与水的流速有关,水的流速≤1.0m/s和流速>1.0m/s相比,水的污垢热阻值取值较大,因此将1.0m/s作为规定流速的下限。
为了使工程技术人员能选取恰当的水的污垢热阻值,摘自现行国家标准《热交换器》GB/T 151水的污垢热阻值见表2,可供工程技术人员根据工程的具体情况选用。
表2 水的污垢热阻值 (×10-4m2•K/W)
续表 2
注:加热介质温度超过205℃,且冷介质会结垢时,表中数值应作相应修改。
续表 2
注:加热介质温度超过205℃,且冷介质会结垢时,表中数值应作相应修改。
流速上限的要求则需结合不同材质考虑防止冲刷侵蚀,这方面一般在设备设计中已有考虑,这里未作规定。水侧壁温上限为70℃是根据国内大型厂换热设备的调查结果而制定的。
污垢热阻值的法定计量单位为m2•K/W,1m2•h•℃/kcal=0.86m2•K/W。
关于腐蚀速率:碳钢设备应小于0.075mm/a,铜合金、不锈钢设备修订为应小于0.005mm/a,国内很多企业都能达到这一标准。这两项指标实际上是对循环冷却水处理提出的要求,或者说是对阻垢缓蚀效果的检验标准,也是在设计阶段作为确定阻垢缓蚀剂配方的依据。设计时应该从设备设计方面的合理性、水质处理的合理性、适宜的运行周期、折旧年限等多方面因素进行综合权衡确定。
3.1.6 对于闭式系统,由于工况条件较为苛刻(如温度较高),对传热效率要求比较严格,通常采用除盐水或软化水作为补充水,污垢热阻值一般均可小于0.86×10-4m2•K/W。
3.1.7 循环冷却水水质指标与换热设备的结构形式、材质、工况条件、污垢热阻值、腐蚀速率,尤其是与循环冷却水药剂处理配方的性能密切相关,本条规定所给出的循环冷却水水质指标均是在本规范所给定的有关条件下,结合当前药剂配方的性能做出的规定。设计中应根据补充水水质指标结合上述条件加以确定。
表3.1.7中指标是循环冷却水处理技术的阶段成果,随着技术的发展,表中数据也将随着改变。
(1) 浊度:循环冷却水的浊度对换热设备的污垢热阻和腐蚀速率影响很大,所以要求越低越好。工厂运行的实践证明循环冷却水系统设有旁滤池时,补充水浊度可控制在5NTU以内,我国大部分地区的循环冷却水的浊度可以控制在10NTU以下,因此表3.1.7规定板式、螺旋板式和翅片管式换热设备,浊度不宜大于10NTU,其他一般不应大于20NTU,工厂运行数据表明这一规定完全满足本规范的污垢热阻值指标。
对于电厂凝汽器,因其传热管内循环冷却水的流速一般均大于1.5m/s,另外凝汽器均设有胶球清洗设施,因此电厂凝汽器内循环冷却水的浊度指标可适当放宽。
悬浮物和浊度虽然两者都是表示水中悬浮固体含量,但是两者所表示的悬浮颗粒直径却不相同,悬浮物所表示的颗粒粒径为1μm以上,而浊度所表示的颗粒粒径为1nm~lμm,即通常所说的胶体物质,而且两者的测试方法也不同,前者是过滤法测定,后者是利用光学原理测定。两者并没有换算关系。因为胶体物质对循环冷却水产生污垢、菌藻滋生起着至关重要的作用,所以将悬浮物质指标改为浊度更为确切、并且应将这一指标尽量控制在更低的水平。
悬浮物和浊度虽然两者都是表示水中悬浮固体含量,但是两者所表示的悬浮颗粒直径却不相同,悬浮物所表示的颗粒粒径为1μm以上,而浊度所表示的颗粒粒径为1nm~lμm,即通常所说的胶体物质,而且两者的测试方法也不同,前者是过滤法测定,后者是利用光学原理测定。两者并没有换算关系。因为胶体物质对循环冷却水产生污垢、菌藻滋生起着至关重要的作用,所以将悬浮物质指标改为浊度更为确切、并且应将这一指标尽量控制在更低的水平。
(2) pH值:循环冷却水的pH值,由补充水水质、浓缩倍数以及药剂配方等因素确定,加酸调节pH值低限不宜低于6.8;不加酸运行的自然pH值上限一般不高于9.5。
(3) 钙硬度+全碱度的指标,是根据国内多数工厂采用的控制项目而确定的,它取代了Ca2+和碱度的分列指标,更能科学地反映两者之间的关系。指标值是根据国内药剂配方不加酸运行数据确定的。主要目的是控制水垢的形成。
壁温大于70℃,钙硬度小于200mg/L的规定主要是针对冶金行业高炉和炼钢直冷循环冷却水系统。
(4) 总Fe:据资料介绍,水中有2.0mg/L的Fe2+存在时,会使碳钢换热器年腐蚀速率增加6倍~7倍,且局部腐蚀加剧。铁离子浓度高会给铁细菌的繁殖创造有利条件。此外,当采用聚磷酸盐作为缓蚀剂时,铁离子还会干扰聚磷酸盐在缓蚀方面的作用,同时还可能导致坚硬的磷酸铁垢。本条指标是根据国内外运行经验确定的,此外,如果循环冷却水中Fe2+不断升高,则表明设备被腐蚀。
随着药剂处理配方的不断改进,本次修订将总Fe指标由1.0mg/L提高至2.0mg/L。
冷却水系统中的总Fe主要来自于系统腐蚀和补充水,在补充水中铁浓度很低的情况下,总Fe的浓度及趋势是监测系统腐蚀情况的重要指标,过高的总Fe浓度表明系统腐蚀速率偏高,除此之外,总Fe浓度过高,对系统中沉积物的控制也带来了很大挑战。系统中铁主要通过分散来控制其沉积,过高的总Fe浓度会消耗大量的分散剂,导致分散剂不足并诱导其他悬浮固体出现沉淀。随着近些年分散剂合成制备技术的发展,药剂对Fe的分散能力得以提升,很多案例已经证明在2.0mg/L指标下,系统仍旧运行良好。另一方面,我国是水资源严重匮乏的国家,为节约水资源,国家提倡水的循环使用,减少排放。而再生水作为循环冷却水的补水使用时,往往总Fe浓度较高,1.0mg/L的阀值限制了系统浓缩倍数,影响再生水的使用。
作为腐蚀速率的重要指标,需要控制腐蚀贡献的总Fe浓度在合理的范围,总Fe1.0mg/L能合理地反映系统腐蚀控制在合理范围。即在总Fe浓度2.0mg/L范围内,腐蚀贡献的总Fe浓度≤1.0mg/L。
(5) Cu2+:为防止Cu2+沉积,引起碳钢的缝隙腐蚀和点蚀。如果系统中有铝材设备,Cu2+指标应不大于40μg/L。
(6) Cl-:国内有关循环冷却水处理试验和工厂调查表明,Cl-对不锈钢的腐蚀有影响,但不是唯一因素。不锈钢设备在循环冷却水中的腐蚀与设备的结构形式、应力情况、使用温度、水的流速、污垢沉积等有密切关系,Cl-只是在一定条件下起催化作用。不锈钢设备的腐蚀损坏首先是由于设备本身存在一些缺陷,冷却水中的Cl-在缺陷部位富集,导致设备的损坏。我国20世纪70年代引进的大化肥循环冷却水系统,曾有过循环冷却水中每升只有几十毫党Cl-时,而发生不锈钢设备损坏的事例。也有循环冷却水中的Cl-达到1000mg/L时,系统中的不锈钢换热器,未出现腐蚀穿孔情况。长期以来,由于循环冷却水中Cl-指标的限制,制约了黄河流域、长江入海口附近工厂的循环冷却水浓缩倍数的提高。我国是一个水资源极为匮乏的国家,循环冷却水中Cl-指标对节约我国宝贵的水资源有着重要意义。根据掌握的资料,我国某些大型化工厂采用磷系复合配方,循环冷却水中Cl-浓度控制在500mg/L~1000mg/L,壳程不锈钢设备未出现腐蚀。因此,对壳程不锈钢换热设备,循环冷却水中Cl-指标不宜大于700mg/L,同时对壁温和水温也加以限制。管程不锈钢换热设备流速条件较好,Cl-浓度不宜大于1000mg/L。
根据某高等院校研究资料表明,Cl-腐蚀的诸多因素中,关键的是温度,据资料介绍,同等条件下温度高者腐蚀加剧,因此在选用Cl-指标时应结合温度因素确定。
因本规范上一版实施以来,质疑Cl-浓度的问题较多,所以本次修订组委托北京科技大学腐蚀与防护中心开展了《循环冷却水中氯离子对不锈钢换热器腐蚀实验研究》,结果如下:
不锈钢腐蚀与介质中的Cl-浓度存在阙值现象。304和316不锈钢在不添加缓蚀阻垢剂情况下发生局部腐蚀的临界Cl-浓度为250mg/L~500mg/L;添加缓蚀阻垢剂后,304不锈钢发生局部腐蚀的临界Cl-浓度为1000mg/L,316不锈钢在添加缓蚀阻垢剂后,发生局部腐蚀的临界Cl-浓度为1200mg/L。
在超高Cl-浓度环境(Cl-浓度50000mg/L)中使用时,缓蚀阻垢剂虽然能够使304和316不锈钢的维钝电流密度小幅度降低,但其维纯电流不稳定、存在明显的“毛刺”现象(即有亚稳态点蚀发生),材料极易诱发点蚀,具有较高的风险,因此不推荐304和316不锈钢在超高Cl-浓度环境中长期服役。
(7) SO42-+C1-:通常采用这个指标来限制SO42-的浓度。根据国外公司的药剂处理配方在国内的使用经验,确定SO42-+C1-的指标为2500mg/L。另外,当水中SO42-与Ca2+的乘积超过其溶度积时,则会产生CaSO4沉淀。
SO42-对混凝土材质的腐蚀影响,按现行国家标准《岩土工程勘察规范》GB 50021的规定执行。
(8) 硅酸:指标175mg/L是根据硅酸盐的饱和溶解度确定的,主要是防止循环冷却水中形成硅酸盐垢。
(9) Mg2+×SiO2指标:主要是防止形成黏性较大、颗粒较细的硅酸镁黏泥。指标值均根据国外资料和国内运行经验确定。
(10) 游离氯:为控制循环冷却水中菌、藻微生物而制定的。指标值是结合国内运行情况确定的。根据国内最新运行数据,本次将指标值0.2mg/L~1.0mg/L修订为0.1mg/L~1.0mg/L。
(11) NH3一N:主要是针对氨厂和再生水回用循环冷却水系统制定的。氨的危害在国内氨厂不乏先例,氨的存在促使硝化菌群的大量繁殖,导致系统pH值降低,腐蚀加剧,同时也消耗大量的液氯,严重时使其失去杀菌作用,因而使系统中各类细菌数量和黏泥量猛增,COD及浊度增加,水质发黑变臭,后果是相当严重的。
(12) 石油类:石油类杂质易形成油污黏附于设备传热面上,影响传热效率和产生垢下腐蚀。
由于炼油企业的特殊性,对其指标略微放宽一些,根据试验室所取得的数据,循环冷却水中石油类杂质的浓度达到10mg/L时,污垢热阻和腐蚀率均在本规范的限值之内。
由于炼油企业的特殊性,对其指标略微放宽一些,根据试验室所取得的数据,循环冷却水中石油类杂质的浓度达到10mg/L时,污垢热阻和腐蚀率均在本规范的限值之内。
(13) COD:这是表示水中有机物多少的一个指标,有机物是微生物的营养源,有机物含量增多将导致细菌大量繁殖,从而产生黏泥沉积、垢下腐蚀等一系列恶果。为了再生水尽可能地回用至循环冷却水系统,再生水应经深度处理后回用,水中COD大部分应为难生物降解物质,应不引起细菌和生物的繁殖。
对于循环冷却水水质中COD≤150mg/L,截至2015年,炼油系统36座、化工系统5座循环水场的循环冷却水水质按照COD≤180mg/L控制,实际运行的COD在120mg/L~160mg/L范围内波动,循环水场运行效果与使用新水作为补充水的系统相当,能够满足生产装置长周期运行要求。第一座循环水场是2000年8月实现工业化运行,到目前已正常应用了16年。
对于循环冷却水水质中COD≤150mg/L。应为再生水及药剂所带来的COD,而不是工艺出现泄漏后循环冷却水可控制的指标。当再生水量占总补充水量60%以上的时候,且再生水经深度处理后水质中COD约为60mg/L时,循环冷却水水质COD控制指标≤150mg/L。
3.1.8 闭式系统中被冷却的工艺介质或设备,对污垢热阻值有较高的要求,因此一般均采用除盐水或者软化水,水质应根据冷却对象的要求确定。电力系统目前一般采用除盐水,并通过离子交换、加碱等方法调节pH值;钢铁行业采用软水或除盐水。表3.1.8中各行业闭式系统水质指标是综合有关标准和实际运行数据确定的。对于其余各行业闭式系统,当采用除盐水为补充水时,投加缓蚀剂后,循环冷却水的电导率指标将有所上升,一般宜小于2500μs/cm,对设备无负面影响(当工艺有特殊要求时除外,如电磁装置的闭路怜却系统一般要求电导率小于100μS/cm)。
根据国内钢铁厂设备用水要求和实际运行经验,结合本次修订时对南京钢铁集团、韶关钢铁集团、江阴兴澄特钢等大中型钢企的实地调研,发现在江浙及两广地区存在着大量的高炉闭式系统以及连铸闭式系统的补充水直接采用新鲜水的案例,由于该地区新鲜水硬度较低,在投加药剂的前提下,闭式系统总硬度指标控制在10mg/L~20mg/L时,循环水系统没有出现结垢倾向。因此本次修订将钢铁厂闭式系统总硬度指标提高至不宜大于20mg/L。
3.1.9 根据国内钢铁厂最新运行数据,本次修订将钢铁厂高炉煤气清洗水pH指标调整为6.5~8.5,同时对指导意义不大的电导率和硫酸盐两项指标从表格中删除。由于直冷循环冷却水系统工艺设备对水质的要求差别较大(如引进不同国家设备制造商的工艺设备要求不同),因此在采用表3.1.9时,应与工艺专业协商确定。
自上一版规范增编直冷循环冷却水水质指标后,经过多年生产实践,冶金行业生产企业出现了由于层流直接冷却循环水中氯离子浓度升高带来的热轧板材在超长贮存期内严重点蚀的案例,并造成了严重经济损失。
此次修订组委托北京科技大学腐蚀与防护中心开展了《模拟层流冷却水残留液环境下典型热轧板的腐蚀行为规律》相关实验工作,结果如下:
不同强度热轧板点蚀深度和安全贮存时间与层流冷却水中C1-浓度水平和其贮存方式有关,C1-浓度水平在20mg/L~300mg/L范围变化时,随着Cl浓度增加,其安全贮存时间逐渐变短,实验数据见表3。
表3 不同强度热轧板与氯离子浓度水平层流液
所对应的安全贮存时间(月)
所对应的安全贮存时间(月)
建议热轧板尽量贮存在干燥环境中,以防止氧化皮吸潮变成电解质溶液进而产生腐蚀破坏;建议降低轧制过程中层流冷却水中的离子浓度,特别是CI-浓度,以降低氧化皮中残留的离子浓度进而减弱其均匀腐蚀和点蚀;建议热轧板贮存时单独贮存最优,堆垛时热轧板间应隔出较大缝隙以避免较严重点蚀的发生。
3.1.10 钙硬度+甲基橙碱度和稳定指数两个指标结合使用,更能准确地控制碳酸钙沉淀。当水质超过上述任何一个指标时,应根据加酸、旁流水软化(除盐)、补充水软化(除盐)等处理进行综合比较确定处理方案。
3.1.11 在浓缩倍数1.5~10.0的条件下,通过对循环冷却水量为10000m3/h的计算得出表4。
计算条件:气温40℃,K值选用0.0016/℃。
表4 不同浓缩倍数系统的补充水置与排污水量
浓缩倍数从3倍提高到5倍,按表4的计算结果,节水效果能提高0.4%,换算为全国节水量可达176亿m3之多,这是一个很可观的数量。现在很多新工程项目不仅要求高浓缩倍数,甚至还限制使用新水,可见用水形势的紧张程度。另外,国内各行各业为求节水也都纷纷研制新的药剂处理配方,达到浓缩倍数5的企业比比皆是,甚至有少数企业已达到浓缩倍数10以上,可见这一指标还是可以做到的。
治金、电力行业在水平衡方案设计时往往为了满足串级用水(冲灰等)的需要,加大循环冷却水系统的排污水量,因而降低了浓缩倍数,但是只要能综合减少新鲜水用量,浓缩倍数可不受此限制。
3.1.12 微生物在循环冷却水系统中大量繁殖,会使循环冷却水颜色变黑,发生恶臭,并形成大量黏泥沉积于冷却塔和换热设备内,隔绝了药剂对金属的保护作用,降低了冷却塔的冷却效果和设备的传热效率,同时还对金属设备造成严重的垢下腐蚀,微生物对循环冷却水系统的危害较之水垢、电化腐蚀来说更为严重,因此控制微生物的危害是首要的。
1 循环冷却水中,以异养菌的生长繁殖最快,数量也最多,它基本上代表了水中全部细菌的数量,所以测定时,常以异养菌的数量代表水中全部细菌总数。这类细菌属于黏液型细菌,所产生的黏液对循环冷却水系统危害很大。此次修订将单位改为CFU/mL,与其他国家标准一致。
2 循环冷却水中生物黏泥量的多少直接反映出系统中微生物的危害程度,因此生物黏泥量的控制是非常重要的。
查找
上节
下节
条文
说明 返回
顶部
说明 返回
顶部