目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
4.1 一般规定
4.1.1 城市轨道交通结构的场地与地基应考虑下列宏观震害或地震反应:
1 强烈地震动造成场地、地基的失稳或失效,包括土层液化、震陷、地裂缝、滑坡等;
2 地表断裂错动,包括地表基岩断裂及构造性地裂造成的破坏;
3 局部地形、地貌、地层结构的变异引起地震动异常造成的特殊破坏。
4.1.2 城市轨道交通结构的场地与地基的勘察和评价应至少包括下列内容:
1 确定场地土的类型和场地类别;
2 对可能产生滑坡、塌陷、崩塌和采空区等的岩土体,进行地震作用下的地基稳定性评价;
3 对判别为液化的土层,根据液化等级提出处理方案;当不进行抗液化处理时,应计入液化效应的影响对土层的设计参数进行修正;
4 划分场地抗震地段类别。
条文说明
4.1.2 根据城市轨道交通结构的特点,本条给出了修建城市轨道交通工程进行工程结构抗震设防时,应该对场地与地基进行勘查和评价的内容。一共4款,这些内容虽各不相同,但又互有交叉,应该根据场地的条件和工程的不同情况与要求,进行其中一项或多项工作。
查找
上节
下节
条文
说明 返回
顶部
说明 返回
顶部
- 上一节:4 场地、地基与基础
- 下一节:4.2 场地
目录导航
- 前言
- 1 总则
- 2 术语和符号
- 2.1 术语
- 2.2 符号
- 3 基本要求
- 3.1 抗震设防要求
- 3.2 抗震性能要求
- 3.3 地震反应计算
- 3.4 减震设计
- 3.5 地震反应观测
- 4 场地、地基与基础
- 4.1 一般规定
- 4.2 场地
- 4.3 地基与基础
- 4.4 可液化场地
- 4.5 场地地震反应分析
- 5 地震作用
- 5.1 一般规定
- 5.2 水平向设计地震动参数
- 5.3 竖向设计地震动参数
- 5.4 设计地震动加速度时程
- 6 地震反应计算
- 6.1 一般规定
- 6.2 地面结构弹性反应谱方法
- 6.3 地面结构弹塑性反应谱方法
- 6.4 地面结构非线性时程分析方法
- 6.5 支座地震反应计算方法
- 6.6 隧道与地下车站结构横向地震反应计算的反应位移法
- 6.7 隧道与地下车站结构横向地震反应计算的反应加速度法
- 6.8 隧道纵向地震反应计算的反应位移法
- 6.9 隧道与地下车站结构地震反应计算的时程分析方法
- 7 抗震性能的验算方法
- 7.1 一般规定
- 7.2 钢筋和钢骨混凝土构件
- 7.3 钢管混凝土构件和钢构件
- 7.4 基础
- 7.5 支座
- 7.6 梁端支承长度和行车安全
- 7.7 隧道与地下车站结构
- 8 高架区间结构
- 8.1 一般规定
- 8.2 地震反应计算
- 8.3 抗震性能验算
- 8.4 抗震构造细节
- 8.5 抗震措施
- 9 高架车站结构
- 9.1 一般规定
- 9.2 地震反应计算
- 9.3 抗震性能验算
- 9.4 抗震构造措施
- 10 隧道与地下车站结构
- 10.1 一般规定
- 10.2 隧道结构地震反应计算
- 10.3 地下车站结构地震反应计算
- 10.4 抗震性能验算
- 10.5 抗震构造措施
- 附录A 支座的恢复力模型
- 附录B 基于集中参数模型的静力与动力分析方法
- B.1 桩基础集中参数建模方法
- B.2 扩大基础集中参数建模方法
- B.3 静力非线性分析
- B.4 动力非线性分析
- 附录C 多点输入反应谱组合系数的计算方法
- 附录D 动力分析中基础的等代弹簧法
- D.1 桩基础等代弹簧
- D.2 扩大基础等代弹簧
- 附录E 反应位移法中土层位移的简单确定方法
- 附录F 钢筋和钢骨混凝土构件抗剪能力计算方法
- F.1 柱式构件的抗剪能力
- F.2 板构件的抗剪能力
- 附录G 构件变形能力计算方法
- G.1 钢筋和钢骨混凝土构件变形能力计算方法
- G.2 钢管混凝土构件变形能力计算方法
- G.3 钢构件变形能力计算方法
- 本规范用词说明
- 引用标准名录
-
笔记需登录后才能查看哦~