目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
7.6 支座
7.6.1 梁或桁架支于砌体或混凝土上的平板支座(参见图8.4.12a),其底板应有足够面积将支座压力传给砌体或混凝土,厚度应根据支座反力对底板产生的弯矩进行计算。
7.6.2 弧形支座(图7.6.2a)和辊轴支座(图7.6.2b)中圆柱形弧面与平板为线接触,其支座反力R应满足下式要求:
式中 d——对辊轴支座为辊轴直径,对弧形支座为弧形表面接触点曲率半径r的2倍;
n——辊轴数目,对弧形支座n=1;
l——弧形表面或辊轴与平板的接触长度。
图7.6.2 弧形支座与辊轴支座示意图
7.6.3 铰轴式支座的圆柱形枢轴(图7.6.3),当两相同半径的圆柱形弧面自由接触的中心角θ≥90°时,其承压应力应按下式计算:
式中 d——枢轴直径;
l——枢轴纵向接触面长度。
7.6.5 为满足支座位移的要求采用橡胶支座时,应根据工程的具体情况和橡胶支座系列产品酌情选用。设计时还应考虑橡胶老化后能更换的可能性。
7.6.6 轴心受压柱或压弯柱的端部为铣平端时,柱身的最大压力直接由铣平端传递,其连接焊缝或螺栓应按最大压力的15%或最大剪力中的较大值进行抗剪计算;当压弯柱出现受拉区时,该区的连接尚应按最大拉力计算。
7.6.2 弧形支座(图7.6.2a)和辊轴支座(图7.6.2b)中圆柱形弧面与平板为线接触,其支座反力R应满足下式要求:
n——辊轴数目,对弧形支座n=1;
l——弧形表面或辊轴与平板的接触长度。
图7.6.2 弧形支座与辊轴支座示意图
l——枢轴纵向接触面长度。
图7.6.3 铰轴式支座示意图
7.6.4 对受力复杂或大跨度结构,为适应支座处不同转角和位移的需要,宜采用球形支座或双曲形支座。7.6.5 为满足支座位移的要求采用橡胶支座时,应根据工程的具体情况和橡胶支座系列产品酌情选用。设计时还应考虑橡胶老化后能更换的可能性。
7.6.6 轴心受压柱或压弯柱的端部为铣平端时,柱身的最大压力直接由铣平端传递,其连接焊缝或螺栓应按最大压力的15%或最大剪力中的较大值进行抗剪计算;当压弯柱出现受拉区时,该区的连接尚应按最大拉力计算。
条文说明
7.6.1 本条为新增加的内容,对工程中最常用的平板支座的设计作出了具体规定。
7.6.2 弧形支座和辊轴支座中,圆柱形表面与平板的接触表面的承压应力,根据原规范GBJ 17-88的计算公式(7.4.2)和(7.4.3)合并为一式为:
7.6.2 弧形支座和辊轴支座中,圆柱形表面与平板的接触表面的承压应力,根据原规范GBJ 17-88的计算公式(7.4.2)和(7.4.3)合并为一式为:
式中 R——支座反力设计值;
l——弧形表面或辊轴与平板的接触长度;
d——辊轴直径(对辊轴支座)或弧形表面半径的2倍(对弧形支座);
n——辊轴数目,对弧形支座n=1。
本规范参考国内外有关规范的规定,认为从发展趋势来看,这两种支座接触面的承载力应与钢材的f2y成正比,故建议用下式表达:
l——弧形表面或辊轴与平板的接触长度;
d——辊轴直径(对辊轴支座)或弧形表面半径的2倍(对弧形支座);
n——辊轴数目,对弧形支座n=1。
本规范参考国内外有关规范的规定,认为从发展趋势来看,这两种支座接触面的承载力应与钢材的f2y成正比,故建议用下式表达:
上式即本规范公式(7.6.2),可以写成为:
对Q235钢,E=206×103N/mm2,f=215N/mm2,则变成为
这与原规范的计算式(7.4.2)和(7.4.3)合并后的式(71)基本一致,但对用高强度钢作成的支座,则本规范公式(7.6.2)的承载力有提高,这与国内外的研究成果相吻合。
7.6.3 公式(7.6.3)原为σ=1.6R/dl≤[σcj],[σcj]为圆柱形枢轴局部紧接承压容许应力,[σcj]≈0.75[σ],再将其换算为极限状态设计表达式即得公式(7.6.3)。
7.6.4、7.6.5 这两条为新增加的内容。为了适应受力复杂或大跨度结构在支座处有较大位移(包括水平位移和不同方向的角位移)的要求,提出了采用橡胶支座和万向球形支座或双曲形支座。双曲线支座的两个互交方向的曲率不同,如果两曲率相同则为球形支座。
橡胶支座有板式和盆式两种,板式承载力小,盆式承载力大,构造简单,安装方便。盆式橡胶支座除压力外还可承受剪力,但不能承受较大拔力,不能防震,容许位移值可达150mm。但橡胶易老化,各项指标不易确定且随时间改变。
万向球形钢支座和新型双曲型钢支座可分为固定支座和可移动支座,其计算方法按计算机程序进行。在地震区则可采用相应的抗震、减震支座,其减震效果可由计算得出,最多能降低地震力10倍以上。这种支座可承受压力、拔力和各向剪力,其抗拔力可达20000kN。以上各类新型支座由北京建筑结构研究所开发,衡水宝力工程橡胶有限公司、上海彭浦橡胶制品总厂生产。经鉴定后,已在北京首都四机位飞机库、上海虹桥飞机库、哈尔滨飞机库、 乌鲁木齐飞机库、广州体育馆、南京长江二桥等数10处国家重点工程中使用。
7.6.3 公式(7.6.3)原为σ=1.6R/dl≤[σcj],[σcj]为圆柱形枢轴局部紧接承压容许应力,[σcj]≈0.75[σ],再将其换算为极限状态设计表达式即得公式(7.6.3)。
7.6.4、7.6.5 这两条为新增加的内容。为了适应受力复杂或大跨度结构在支座处有较大位移(包括水平位移和不同方向的角位移)的要求,提出了采用橡胶支座和万向球形支座或双曲形支座。双曲线支座的两个互交方向的曲率不同,如果两曲率相同则为球形支座。
橡胶支座有板式和盆式两种,板式承载力小,盆式承载力大,构造简单,安装方便。盆式橡胶支座除压力外还可承受剪力,但不能承受较大拔力,不能防震,容许位移值可达150mm。但橡胶易老化,各项指标不易确定且随时间改变。
万向球形钢支座和新型双曲型钢支座可分为固定支座和可移动支座,其计算方法按计算机程序进行。在地震区则可采用相应的抗震、减震支座,其减震效果可由计算得出,最多能降低地震力10倍以上。这种支座可承受压力、拔力和各向剪力,其抗拔力可达20000kN。以上各类新型支座由北京建筑结构研究所开发,衡水宝力工程橡胶有限公司、上海彭浦橡胶制品总厂生产。经鉴定后,已在北京首都四机位飞机库、上海虹桥飞机库、哈尔滨飞机库、 乌鲁木齐飞机库、广州体育馆、南京长江二桥等数10处国家重点工程中使用。
查找
上节
下节
条文
说明 返回
顶部
说明 返回
顶部
- 上一节:7.5 连接节点处板件的计算
- 下一节:8 构造要求
目录导航
- 前言
- 1 总则
- 2 术语和符号
- 2.1 术语
- 2.2 符号
- 3 基本设计规定
- 3.1 设计原则
- 3.2 荷载和荷载效应计算
- 3.3 材料选用
- 3.4 设计指标
- 3.5 结构或构件变形的规定
- 4 受弯构件的计算
- 4.1 强度
- 4.2 整体稳定
- 4.3 局部稳定
- 4.4 组合梁腹板考虑屈曲后强度的计算
- 5 轴心受力构件和拉弯、压弯构件的计算
- 5.1 轴心受力构件
- 5.2 拉弯构件和压弯构件
- 5.3 构件的计算长度和容许长细比
- 5.4 受压构件的局部稳定
- 6 疲劳计算
- 6.1 一般规定
- 6.2 疲劳计算
- 7 连接计算
- 7.1 焊缝连接
- 7.2 紧固件(螺栓、铆钉等)连接
- 7.3 组合工字粱翼缘连接
- 7.4 粱与柱的刚性连接
- 7.5 连接节点处板件的计算
- 7.6 支座
- 8 构造要求
- 8.1 一般规定
- 8.2 焊缝连接
- 8.3 螺栓连接和铆钉连接
- 8.4 结构构件
- 8.5 对吊车梁和吊车桁架(或类似结构)的要求
- 8.6 大跨度屋盖结构
- 8.7 提高寒冷地区结构抗脆断能力的要求
- 8.8 制作、运输和安装
- 8.9 防护和隔热
- 9 塑性设计
- 9.1 一般规定
- 9.2 构件的计算
- 9.3 容许长细比和构造要求
- 10 钢管结构
- 10.1 一般规定
- 10.2 构造要求
- 10.3 杆件和节点承载力
- 11 钢与混凝土组合梁
- 11.1 一般规定
- 11.2 组合梁设计
- 11.3 抗剪连接件的计算
- 11.4 挠度计算
- 11.5 构造要求
- 附录A 结构或构件的变形容许值
- 附录B 梁的整体稳定系数
- 附录C 轴心受压构件的稳定系数
- 附录D 柱的计算长度系数
- 附录E 疲劳计算的构件和连接分类
- 附录F 桁架节点板在斜腹杆压力作用下的稳定计算
- 本规范用词说明
-
笔记需登录后才能查看哦~