目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
8.5 对吊车梁和吊车桁架(或类似结构)的要求
8.5.1 焊接吊车梁的翼缘板宜用一层钢板,当采用两层钢板时,外层钢板宜沿梁通长设置,并应在设计和施工中采取措施使上翼缘两层钢板紧密接触。
8.5.2 支承夹钳或刚性料耙硬钩吊车以及类似吊车的结构,不宜采用吊车桁架和制动桁架。
8.5.3 焊接吊车桁架应符合下列要求:
1 在桁架节点处,腹杆与弦杆之间的间隙a不宜小于50mm,节点板的两侧边宜做成半径r不小于60mm的圆弧;节点板边缘与腹杆轴线的夹角θ不应小于30°(图8.5.3-1);节点板与角钢弦杆的连接焊缝,起落弧点应至少缩进5mm(图8.5.3-1a);
节点板与H形截面弦杆的T形对接与角接组合焊缝应予焊透,圆弧处不得有起落弧缺陷,其中重级工作制吊车桁架的圆弧处应予打磨,使之与弦杆平缓过渡(图8.5.3-1b)。
2 杆件的填板当用焊缝连接时,焊缝起落弧点应缩进至少5mm(图8.5.3-1c),重级工作制吊车桁架杆件的填板应采用高强度螺栓连接。
3 当桁架杆件为H形截面时,节点构造可采用图8.5.3-2的形式。
8.5.5 在焊接吊车梁或吊车桁架中,对7.1.1条中要求焊透的T形接头对接与角接组合焊缝形式宜如图8.5.5所示。
在焊接吊车梁中,横向加劲肋(含短加劲肋)不得与受拉翼缘相焊,但可与受压翼缘焊接。端加劲肋可与梁上下翼缘相焊,中间横向加劲肋的下端宜在距受拉下翼缘50~100mm处断开,其与腹板的连接焊缝不宜在肋下端起落弧。
当吊车梁受拉翼缘(或吊车桁架下弦)与支撑相连时,不宜采用焊接。
8.5.7 直接铺设轨道的吊车桁架上弦,其构造要求应与连续吊车梁相同。
8.5.8 重级工作制吊车梁中,上翼缘与柱或制动桁架传递水平力的连接宜采用高强度螺栓的摩擦型连接,而上翼缘与制动梁的连接,可采用高强度螺栓摩擦型连接或焊缝连接。
吊车梁端部与柱的连接构造应设法减少由于吊车梁弯曲变形而在连接处产生的附加应力。
8.5.9 当吊车桁架和重级工作制吊车梁跨度等于或大于12m,或轻、中级工作制吊车梁跨度等于或大于18m时,宜设置辅助桁架和下翼缘(下弦)水平支撑系统。当设置垂直支撑时,其位置不宜在吊车梁或吊车桁架竖向挠度较大处。
对吊车桁架,应采取构造措施,以防止其上弦因轨道偏心而扭转。
8.5.10 重级工作制吊车梁的受拉翼缘板(或吊车桁架的受拉弦杆)边缘,宜为轧制边或自动气割边,当用手工气割或剪切机切割时,应沿全长刨边。
8.5.11 吊车梁的受拉翼缘(或吊车桁架的受拉弦杆)上不得焊接悬挂设备的零件,并不宜在该处打火或焊接夹具。
8.5.12 吊车钢轨的接头构造应保证车轮平稳通过。当采用焊接长轨且用压板与吊车梁连接时,压板与钢轨间应留有一定空隙(约1mm),以使钢轨受温度作用后有纵向伸缩的可能。
8.5.2 支承夹钳或刚性料耙硬钩吊车以及类似吊车的结构,不宜采用吊车桁架和制动桁架。
8.5.3 焊接吊车桁架应符合下列要求:
1 在桁架节点处,腹杆与弦杆之间的间隙a不宜小于50mm,节点板的两侧边宜做成半径r不小于60mm的圆弧;节点板边缘与腹杆轴线的夹角θ不应小于30°(图8.5.3-1);节点板与角钢弦杆的连接焊缝,起落弧点应至少缩进5mm(图8.5.3-1a);
节点板与H形截面弦杆的T形对接与角接组合焊缝应予焊透,圆弧处不得有起落弧缺陷,其中重级工作制吊车桁架的圆弧处应予打磨,使之与弦杆平缓过渡(图8.5.3-1b)。
2 杆件的填板当用焊缝连接时,焊缝起落弧点应缩进至少5mm(图8.5.3-1c),重级工作制吊车桁架杆件的填板应采用高强度螺栓连接。
3 当桁架杆件为H形截面时,节点构造可采用图8.5.3-2的形式。
图8.5.3-1 吊车桁架节点(一)
图8.5.3-2 吊车桁架节点(二)
8.5.4 吊车梁翼缘板或腹板的焊接拼接应采用加引弧板和引出板的焊透对接焊缝,引弧板和引出板割去处应予打磨平整。焊接吊车梁和焊接吊车桁架的工地整段拼接应采用焊接或高强度螺栓的摩擦型连接。8.5.5 在焊接吊车梁或吊车桁架中,对7.1.1条中要求焊透的T形接头对接与角接组合焊缝形式宜如图8.5.5所示。
图8.5.5 焊透的T形接头对接与角接组合焊缝
8.5.6 吊车梁横向加劲胁的宽度不宜小于90mm。在支座处的横向加劲肋应在腹板两侧成对设置,并与梁上下翼缘刨平顶紧。中间横向加劲肋的上端应与梁上翼缘刨平顶紧,在重级工作制吊车梁中,中间横向加劲肋亦应在腹板两侧成对布置,而中、轻级工作制吊车梁则可单侧设置或两侧错开设置。在焊接吊车梁中,横向加劲肋(含短加劲肋)不得与受拉翼缘相焊,但可与受压翼缘焊接。端加劲肋可与梁上下翼缘相焊,中间横向加劲肋的下端宜在距受拉下翼缘50~100mm处断开,其与腹板的连接焊缝不宜在肋下端起落弧。
当吊车梁受拉翼缘(或吊车桁架下弦)与支撑相连时,不宜采用焊接。
8.5.7 直接铺设轨道的吊车桁架上弦,其构造要求应与连续吊车梁相同。
8.5.8 重级工作制吊车梁中,上翼缘与柱或制动桁架传递水平力的连接宜采用高强度螺栓的摩擦型连接,而上翼缘与制动梁的连接,可采用高强度螺栓摩擦型连接或焊缝连接。
吊车梁端部与柱的连接构造应设法减少由于吊车梁弯曲变形而在连接处产生的附加应力。
8.5.9 当吊车桁架和重级工作制吊车梁跨度等于或大于12m,或轻、中级工作制吊车梁跨度等于或大于18m时,宜设置辅助桁架和下翼缘(下弦)水平支撑系统。当设置垂直支撑时,其位置不宜在吊车梁或吊车桁架竖向挠度较大处。
对吊车桁架,应采取构造措施,以防止其上弦因轨道偏心而扭转。
8.5.10 重级工作制吊车梁的受拉翼缘板(或吊车桁架的受拉弦杆)边缘,宜为轧制边或自动气割边,当用手工气割或剪切机切割时,应沿全长刨边。
8.5.11 吊车梁的受拉翼缘(或吊车桁架的受拉弦杆)上不得焊接悬挂设备的零件,并不宜在该处打火或焊接夹具。
8.5.12 吊车钢轨的接头构造应保证车轮平稳通过。当采用焊接长轨且用压板与吊车梁连接时,压板与钢轨间应留有一定空隙(约1mm),以使钢轨受温度作用后有纵向伸缩的可能。
条文说明
8.5.1 双层翼缘板的焊接吊车梁在国内尚缺乏使用经验,虽于1980年进行了静力和疲劳性能试验,鉴于试验条件与实际受力情况有一定差别,因此规定外层翼缘板要通长设置及两层翼缘板紧密接触的措施。在中、重级工作制焊接吊车梁中使用,应慎重考虑。
8.5.2 根据调研,在重级工作制吊车桁架或制动桁架中,凡节点连接是铆钉或高强度螺栓,经长期生产考验,一般使用尚属正常,但在类似的夹钳吊车或刚性料耙等硬钩吊车的吊车桁架或制动桁架中,则有较多的破坏现象,故作此规定。分析其原因为桁架式结构荷载的动力作用常集聚于各节点,尤其是上弦节点破坏较多。若用全焊桁架,节点由于有焊接应力、次应力等形成复杂的应力场和应力集中,因而疲劳强度低,亦将导致节点处过早破坏。
8.5.3 本条所列各项构造要求,系根据国内试验成果确定的。
1 节点板的腹杆端部区域是杆件汇合的地方,焊缝多且较集中,应力分布复杂,焊接残余应力的影响也较大,根据试验及有关资料的建议,吊车桁架节点板处、腹杆与弦杆之间的间隙以保持在50~60mm为宜,此时对节点板焊接影响较少。
节点板两侧与弦杆连接处采用圆弧过渡,可以减小应力集中,圆弧半径r愈大效果愈好,经试验及查阅有关资料,r值不小于60mm为宜。
节点板与腹杆轴线的夹角θ不小于30°,其目的在于使节点板有足够的传力宽度,受力较均匀,以保证节点板的正常工作能力。
2 焊缝的起落弧点往往有明显咬肉等缺陷,引起较大的应力集中而降低杆件疲劳强度,为此规定起落弧点距节点板(或填板)边缘应至少为5mm。
根据试验,用小锤敲击焊缝两端可以消除残余应力的影响。
3 图8.5.3-2是新增加的桁架杆件采用轧制(或焊接)H型钢制成的全焊接吊车桁架的节点示意图,北京钢铁设计研究总院采用这种在重级工作制吊车作用下的吊车桁架已有15~20年的使用经验。
8.5.4 焊接吊车梁和焊接吊车桁架的工地拼接应采用焊接,当有必要时亦可采用高强度螺栓摩擦型连接(桥梁钢结构的工地拼接亦正在扩大焊接拼接的范围),其中吊车梁的上翼缘更宜采用对接焊缝拼接。但在采用焊接拼接时,必须加强对焊缝质量的检验工作。
8.5.5 吊车梁腹板与上翼缘的连接焊缝,除承受剪应力外,尚承受轮压产生的局部压应力,且轨道偏心也给连接焊缝带来很不利的影响,尤其是重级工作制吊车梁,操作频繁,上翼缘焊缝容易疲劳破坏。对起重量大于或等于50t的中级工作制吊车,因轮压很大,且实际上同样有疲劳问题,故亦要求焊透,至于吊车桁架中节点板与上弦的连接焊缝,因其受力情况复杂,同样亦规定应予焊透。
此外,腹板边缘宜机械加工开坡口,其坡口角度应按腹板厚度以焊透要求为前提,由施工单位做焊透试验来确定,但宜满足图8.5.5中规定的焊脚尺寸的要求。
8.5.6 关于焊接吊车梁中间横向加劲肋端部是否与受压翼缘焊接的问题,国外有两种不同意见,一种认为焊接后几年就出现开裂,故不主张焊接;另一种认为没有什么问题,可以相焊。根据我国的实践经验,若仅顶紧不焊,则当横向加劲肋与腹板焊接后,由于温度收缩而使加劲肋脱离翼缘,顶不紧了,只好再补充焊接。使用中亦没有发现什么问题,故本条规定中间横向加劲肋可与受压翼缘相焊。
试验研究证明,吊车梁中间横向加劲肋与腹板的连接焊缝,若在受拉区端部留有起落弧,则容易在腹板上引起疲劳裂缝。条文规定不宜在加劲肋端部起落弧,采用绕角焊、围焊或其他方法应与施工单位具体研究确定。总之,在加劲肋端部的焊缝截面不能有突变,亦有因围焊质量不好而出问题的(后改用风铲加工),所以宜由高级焊工施焊。
吊车梁的疲劳破坏一般是从受拉区开裂开始。因此,中、重级工作制吊车梁的受拉翼缘与支撑的连接采用焊接是不合适的,采用C级螺栓比采用焊缝方便,故建议采用螺栓连接。
同样理由,规定中间横向加劲肋端部不应与受拉翼缘相焊,也不应另加零件与受拉翼缘焊接,加劲肋宜在距受拉翼缘不少于50~100mm处断开。
本条适用于简支和连续吊车梁。
8.5.7 直接铺设轨道的吊车桁架上弦,其工作性质与连续吊车梁相近,而原规范要求“与吊车梁相同”,不够确切,新规范作了改正。
8.5.8 吊车梁(或吊车桁架)上翼缘与制动结构及柱相互间的连接,一般采用搭接。其中主要是吊车梁上翼缘与制动结构的连接和吊车梁上翼缘与柱的连接。
1 在重级工作制吊车作用下,吊车梁(或吊车桁架)上翼缘与制动桁架的连接,因动力作用常集中于节点,加以桁架节点处有次应力,受力情况十分复杂,很容易发生损坏,故宜采用高强度螺栓连接。而吊车梁上翼缘与制动梁的连接,重庆钢铁设计研究院和重庆大学从1988年到1992年曾对此进行了专门的研究,通过静力、疲劳试验和理论分析,科学地论证了只要能保证焊接质量和控制焊接变形仅用单面角焊缝连接的可行性,并在攀钢、成都无缝钢管厂和宝钢等工程中应用,效果良好,没有发现什么问题。设计中,制动板与吊车梁上翼缘之间还增加了按构造布置的C级普通螺栓连接,以改善安装条件和焊缝受力情况。用焊缝连接不仅可节约大量投资,而且可以提高工效1~2倍。故本条规定亦可采用焊缝连接。当然,对特重级工作制吊车来说,仍宜采用高强度螺栓摩擦型连接。
2 关于吊车梁上翼缘与柱的连接,既要传递水平力,又要防止因构造欠妥使吊车梁在垂直平面内弯曲时形成端部的局部嵌固作用而产生较大的负弯矩,导致连接件开裂。故宜采用高强度螺栓连接。国内有些设计单位采用板铰连接的方式,效果较好。因此本条建议设计时应尽量采取措施减少这种附加应力。
8.5.9 吊车梁辅助桁架和水平、垂直支撑系统的设置范围,系根据以往设计经验确定的,但有不同意见,故规定为:宜设置辅助桁架和水平、垂直支撑系统。
为了使吊车梁(或吊车桁架)和辅助桁架(或两吊车梁)之间产生的相对挠度不会导致垂直支撑产生过大的内力,垂直支撑应避免设置在吊车梁的跨度中央,应设在梁跨度的约1/4处,并对称设置。
对吊车桁架,为了防止其上弦因轨道偏心而扭转,一般在其高度范围内每隔约6m设置空腹或实腹的横隔。
8.5.10 重级工作制吊车梁的受拉翼缘,当用手工气割时,边缘不能平直并有缺陷,在用切割机切割时,边缘有冷加工硬化区,这些缺陷在动力荷载作用下,对疲劳不利,故要求沿全长刨边。
8.5.11 在疲劳试验中,发现试验梁在制作时,在受拉翼缘处打过火,疲劳破坏就从打火处开始,至于焊接夹具就更不恰当了,故本条规定不宜打火。
8.5.12 钢轨的接头有平接、斜接、人字形接头和焊接等。平接简便,采用最多,但有缝隙,冲击很大。斜接、人字形接头,车轮通过较平稳,但加工极费事,采用不多。目前已有不少厂采用焊接长轨,效果良好。焊接长轨要保证轨道在温度作用下能沿纵向伸缩,同时不损伤固定件,日本在钢轨固定件与轨道间留有约1mm空隙,西德经验约为2mm,我国使用的约为1mm。为此建议压板与钢轨间接触应留有一定的空隙(约1mm)。
此外,在调研中发现焊接长轨用钩头螺栓固定时,在制动板一侧的钩头螺栓不能沿吊车梁纵向移动而将钩头螺栓拉弯或拉断,故在焊接长轨中不应采用钩头螺栓固定。
8.5.2 根据调研,在重级工作制吊车桁架或制动桁架中,凡节点连接是铆钉或高强度螺栓,经长期生产考验,一般使用尚属正常,但在类似的夹钳吊车或刚性料耙等硬钩吊车的吊车桁架或制动桁架中,则有较多的破坏现象,故作此规定。分析其原因为桁架式结构荷载的动力作用常集聚于各节点,尤其是上弦节点破坏较多。若用全焊桁架,节点由于有焊接应力、次应力等形成复杂的应力场和应力集中,因而疲劳强度低,亦将导致节点处过早破坏。
8.5.3 本条所列各项构造要求,系根据国内试验成果确定的。
1 节点板的腹杆端部区域是杆件汇合的地方,焊缝多且较集中,应力分布复杂,焊接残余应力的影响也较大,根据试验及有关资料的建议,吊车桁架节点板处、腹杆与弦杆之间的间隙以保持在50~60mm为宜,此时对节点板焊接影响较少。
节点板两侧与弦杆连接处采用圆弧过渡,可以减小应力集中,圆弧半径r愈大效果愈好,经试验及查阅有关资料,r值不小于60mm为宜。
节点板与腹杆轴线的夹角θ不小于30°,其目的在于使节点板有足够的传力宽度,受力较均匀,以保证节点板的正常工作能力。
2 焊缝的起落弧点往往有明显咬肉等缺陷,引起较大的应力集中而降低杆件疲劳强度,为此规定起落弧点距节点板(或填板)边缘应至少为5mm。
根据试验,用小锤敲击焊缝两端可以消除残余应力的影响。
3 图8.5.3-2是新增加的桁架杆件采用轧制(或焊接)H型钢制成的全焊接吊车桁架的节点示意图,北京钢铁设计研究总院采用这种在重级工作制吊车作用下的吊车桁架已有15~20年的使用经验。
8.5.4 焊接吊车梁和焊接吊车桁架的工地拼接应采用焊接,当有必要时亦可采用高强度螺栓摩擦型连接(桥梁钢结构的工地拼接亦正在扩大焊接拼接的范围),其中吊车梁的上翼缘更宜采用对接焊缝拼接。但在采用焊接拼接时,必须加强对焊缝质量的检验工作。
8.5.5 吊车梁腹板与上翼缘的连接焊缝,除承受剪应力外,尚承受轮压产生的局部压应力,且轨道偏心也给连接焊缝带来很不利的影响,尤其是重级工作制吊车梁,操作频繁,上翼缘焊缝容易疲劳破坏。对起重量大于或等于50t的中级工作制吊车,因轮压很大,且实际上同样有疲劳问题,故亦要求焊透,至于吊车桁架中节点板与上弦的连接焊缝,因其受力情况复杂,同样亦规定应予焊透。
此外,腹板边缘宜机械加工开坡口,其坡口角度应按腹板厚度以焊透要求为前提,由施工单位做焊透试验来确定,但宜满足图8.5.5中规定的焊脚尺寸的要求。
8.5.6 关于焊接吊车梁中间横向加劲肋端部是否与受压翼缘焊接的问题,国外有两种不同意见,一种认为焊接后几年就出现开裂,故不主张焊接;另一种认为没有什么问题,可以相焊。根据我国的实践经验,若仅顶紧不焊,则当横向加劲肋与腹板焊接后,由于温度收缩而使加劲肋脱离翼缘,顶不紧了,只好再补充焊接。使用中亦没有发现什么问题,故本条规定中间横向加劲肋可与受压翼缘相焊。
试验研究证明,吊车梁中间横向加劲肋与腹板的连接焊缝,若在受拉区端部留有起落弧,则容易在腹板上引起疲劳裂缝。条文规定不宜在加劲肋端部起落弧,采用绕角焊、围焊或其他方法应与施工单位具体研究确定。总之,在加劲肋端部的焊缝截面不能有突变,亦有因围焊质量不好而出问题的(后改用风铲加工),所以宜由高级焊工施焊。
吊车梁的疲劳破坏一般是从受拉区开裂开始。因此,中、重级工作制吊车梁的受拉翼缘与支撑的连接采用焊接是不合适的,采用C级螺栓比采用焊缝方便,故建议采用螺栓连接。
同样理由,规定中间横向加劲肋端部不应与受拉翼缘相焊,也不应另加零件与受拉翼缘焊接,加劲肋宜在距受拉翼缘不少于50~100mm处断开。
本条适用于简支和连续吊车梁。
8.5.7 直接铺设轨道的吊车桁架上弦,其工作性质与连续吊车梁相近,而原规范要求“与吊车梁相同”,不够确切,新规范作了改正。
8.5.8 吊车梁(或吊车桁架)上翼缘与制动结构及柱相互间的连接,一般采用搭接。其中主要是吊车梁上翼缘与制动结构的连接和吊车梁上翼缘与柱的连接。
1 在重级工作制吊车作用下,吊车梁(或吊车桁架)上翼缘与制动桁架的连接,因动力作用常集中于节点,加以桁架节点处有次应力,受力情况十分复杂,很容易发生损坏,故宜采用高强度螺栓连接。而吊车梁上翼缘与制动梁的连接,重庆钢铁设计研究院和重庆大学从1988年到1992年曾对此进行了专门的研究,通过静力、疲劳试验和理论分析,科学地论证了只要能保证焊接质量和控制焊接变形仅用单面角焊缝连接的可行性,并在攀钢、成都无缝钢管厂和宝钢等工程中应用,效果良好,没有发现什么问题。设计中,制动板与吊车梁上翼缘之间还增加了按构造布置的C级普通螺栓连接,以改善安装条件和焊缝受力情况。用焊缝连接不仅可节约大量投资,而且可以提高工效1~2倍。故本条规定亦可采用焊缝连接。当然,对特重级工作制吊车来说,仍宜采用高强度螺栓摩擦型连接。
2 关于吊车梁上翼缘与柱的连接,既要传递水平力,又要防止因构造欠妥使吊车梁在垂直平面内弯曲时形成端部的局部嵌固作用而产生较大的负弯矩,导致连接件开裂。故宜采用高强度螺栓连接。国内有些设计单位采用板铰连接的方式,效果较好。因此本条建议设计时应尽量采取措施减少这种附加应力。
8.5.9 吊车梁辅助桁架和水平、垂直支撑系统的设置范围,系根据以往设计经验确定的,但有不同意见,故规定为:宜设置辅助桁架和水平、垂直支撑系统。
为了使吊车梁(或吊车桁架)和辅助桁架(或两吊车梁)之间产生的相对挠度不会导致垂直支撑产生过大的内力,垂直支撑应避免设置在吊车梁的跨度中央,应设在梁跨度的约1/4处,并对称设置。
对吊车桁架,为了防止其上弦因轨道偏心而扭转,一般在其高度范围内每隔约6m设置空腹或实腹的横隔。
8.5.10 重级工作制吊车梁的受拉翼缘,当用手工气割时,边缘不能平直并有缺陷,在用切割机切割时,边缘有冷加工硬化区,这些缺陷在动力荷载作用下,对疲劳不利,故要求沿全长刨边。
8.5.11 在疲劳试验中,发现试验梁在制作时,在受拉翼缘处打过火,疲劳破坏就从打火处开始,至于焊接夹具就更不恰当了,故本条规定不宜打火。
8.5.12 钢轨的接头有平接、斜接、人字形接头和焊接等。平接简便,采用最多,但有缝隙,冲击很大。斜接、人字形接头,车轮通过较平稳,但加工极费事,采用不多。目前已有不少厂采用焊接长轨,效果良好。焊接长轨要保证轨道在温度作用下能沿纵向伸缩,同时不损伤固定件,日本在钢轨固定件与轨道间留有约1mm空隙,西德经验约为2mm,我国使用的约为1mm。为此建议压板与钢轨间接触应留有一定的空隙(约1mm)。
此外,在调研中发现焊接长轨用钩头螺栓固定时,在制动板一侧的钩头螺栓不能沿吊车梁纵向移动而将钩头螺栓拉弯或拉断,故在焊接长轨中不应采用钩头螺栓固定。
查找
上节
下节
条文
说明 返回
顶部
说明 返回
顶部
- 上一节:8.4 结构构件
- 下一节:8.6 大跨度屋盖结构
目录导航
- 前言
- 1 总则
- 2 术语和符号
- 2.1 术语
- 2.2 符号
- 3 基本设计规定
- 3.1 设计原则
- 3.2 荷载和荷载效应计算
- 3.3 材料选用
- 3.4 设计指标
- 3.5 结构或构件变形的规定
- 4 受弯构件的计算
- 4.1 强度
- 4.2 整体稳定
- 4.3 局部稳定
- 4.4 组合梁腹板考虑屈曲后强度的计算
- 5 轴心受力构件和拉弯、压弯构件的计算
- 5.1 轴心受力构件
- 5.2 拉弯构件和压弯构件
- 5.3 构件的计算长度和容许长细比
- 5.4 受压构件的局部稳定
- 6 疲劳计算
- 6.1 一般规定
- 6.2 疲劳计算
- 7 连接计算
- 7.1 焊缝连接
- 7.2 紧固件(螺栓、铆钉等)连接
- 7.3 组合工字粱翼缘连接
- 7.4 粱与柱的刚性连接
- 7.5 连接节点处板件的计算
- 7.6 支座
- 8 构造要求
- 8.1 一般规定
- 8.2 焊缝连接
- 8.3 螺栓连接和铆钉连接
- 8.4 结构构件
- 8.5 对吊车梁和吊车桁架(或类似结构)的要求
- 8.6 大跨度屋盖结构
- 8.7 提高寒冷地区结构抗脆断能力的要求
- 8.8 制作、运输和安装
- 8.9 防护和隔热
- 9 塑性设计
- 9.1 一般规定
- 9.2 构件的计算
- 9.3 容许长细比和构造要求
- 10 钢管结构
- 10.1 一般规定
- 10.2 构造要求
- 10.3 杆件和节点承载力
- 11 钢与混凝土组合梁
- 11.1 一般规定
- 11.2 组合梁设计
- 11.3 抗剪连接件的计算
- 11.4 挠度计算
- 11.5 构造要求
- 附录A 结构或构件的变形容许值
- 附录B 梁的整体稳定系数
- 附录C 轴心受压构件的稳定系数
- 附录D 柱的计算长度系数
- 附录E 疲劳计算的构件和连接分类
- 附录F 桁架节点板在斜腹杆压力作用下的稳定计算
- 本规范用词说明
-
笔记需登录后才能查看哦~