目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
9.1 一般规定
9.1.1 本章规定适用于不直接承受动力荷载的固端梁、连续梁以及由实腹构件组成的单层和两层框架结构。
9.1.2 采用塑性设计的结构或构件,按承载能力极限状态设计时,应采用荷载的设计值,考虑构件截面内塑性的发展及由此引起的内力重分配,用简单塑性理论进行内力分析。
按正常使用极限状态设计时,采用荷载的标准值,并按弹性理论进行计算。
9.1.3 按塑性设计时,钢材的力学性能应满足强屈比fu/fy≥1.2,伸长率δs≥15%,相应于抗拉强度fu的应变εu不小于20倍屈服点应变εy。
9.1.4 塑性设计截面板件的宽厚比应符合表9.1.4的规定。
续表9.1.4
9.1.2 采用塑性设计的结构或构件,按承载能力极限状态设计时,应采用荷载的设计值,考虑构件截面内塑性的发展及由此引起的内力重分配,用简单塑性理论进行内力分析。
按正常使用极限状态设计时,采用荷载的标准值,并按弹性理论进行计算。
9.1.3 按塑性设计时,钢材的力学性能应满足强屈比fu/fy≥1.2,伸长率δs≥15%,相应于抗拉强度fu的应变εu不小于20倍屈服点应变εy。
9.1.4 塑性设计截面板件的宽厚比应符合表9.1.4的规定。
表9.1.4 板件宽厚比
续表9.1.4
条文说明
9.1.1 本条明确指出本章的适用范围是超静定梁、单层框架和两层框架。对两层以上的框架,目前我国的理论研究和实践经验较少,故未包括在内。两层以上的无支撑框架,必须按二阶理论进行分析或考虑P-△效应。两层以上的有支撑框架,则在支撑构件的设计中,必须考虑二阶(轴力)效应。如果设计者掌握了二阶理论的分析和设计方法,并有足够的依据时,也不排除在两层以上的框架设计中采用塑性设计。
9.1.2 简单塑性理论是指假定材料为理想弹塑性体,荷载按比例增加。计算内力时,考虑发生塑性铰而使结构转化成破坏机构体系。
9.1.3 本条系将原规范条文说明中有关钢材力学性能的要求经修正后列为正文,即:
1 强屈比fu/fy≥1.2;
2 伸长率δ5≥15%;
3 相应于抗拉强度fu的应变εu不小于20倍屈服点应变εy。
这些都是为了截面充分发展塑性的必要要求。上述第3项要求与原规范不同,原规范为屈服台阶末端的应变εst≥6εp(εp指弹性应变),也就是要求钢材有较长的屈服台阶。但有些低合金高强度钢,如15MnV就达不到此项要求,而根据国外规范的有关规定,15MnV可用于塑性设计。现根据欧洲规范EC3-ENV-1993,将此项要求改为εu≥20εy(见陈绍蕃编写的《钢结构设计原理》第二版)。
9.1.4 塑性设计要求某些截面形成塑性铰并能产生所需的转动,使结构形成机构,故对构件中的板件宽厚比应严加控制,以避免由于板件局部失稳而降低构件的承载能力。
工字形翼缘板沿纵向均匀受压,可按正交异性板的屈曲问题求解,或用受约束的矩形板的扭转屈曲问题求解。当不考虑腹板对翼缘的约束时(考虑约束提高临界力3%左右),上述两种求解方法有相同的结果:
9.1.2 简单塑性理论是指假定材料为理想弹塑性体,荷载按比例增加。计算内力时,考虑发生塑性铰而使结构转化成破坏机构体系。
9.1.3 本条系将原规范条文说明中有关钢材力学性能的要求经修正后列为正文,即:
1 强屈比fu/fy≥1.2;
2 伸长率δ5≥15%;
3 相应于抗拉强度fu的应变εu不小于20倍屈服点应变εy。
这些都是为了截面充分发展塑性的必要要求。上述第3项要求与原规范不同,原规范为屈服台阶末端的应变εst≥6εp(εp指弹性应变),也就是要求钢材有较长的屈服台阶。但有些低合金高强度钢,如15MnV就达不到此项要求,而根据国外规范的有关规定,15MnV可用于塑性设计。现根据欧洲规范EC3-ENV-1993,将此项要求改为εu≥20εy(见陈绍蕃编写的《钢结构设计原理》第二版)。
9.1.4 塑性设计要求某些截面形成塑性铰并能产生所需的转动,使结构形成机构,故对构件中的板件宽厚比应严加控制,以避免由于板件局部失稳而降低构件的承载能力。
工字形翼缘板沿纵向均匀受压,可按正交异性板的屈曲问题求解,或用受约束的矩形板的扭转屈曲问题求解。当不考虑腹板对翼缘的约束时(考虑约束提高临界力3%左右),上述两种求解方法有相同的结果:
式中 b、t——翼缘板的自由外伸宽度和厚度;
Gst——钢材剪切应变硬化模量,其值按非连续屈服理论求得:
Gst——钢材剪切应变硬化模量,其值按非连续屈服理论求得:
Est——钢材的应变硬化模量。
以Q235钢为例,取E=206×103N/mm2;Est=5.6×103N/mm2;G=E/2.6;令σcr=fy=235N/mm2,即可求得b/t=9.13,因此建议b/t≤9 。
箱形截面的翼缘板以及压弯构件腹板的宽厚比均可按理论方法求得。本条表9.1.4所建议的宽厚比参考了有关规范或资料的规定。
以Q235钢为例,取E=206×103N/mm2;Est=5.6×103N/mm2;G=E/2.6;令σcr=fy=235N/mm2,即可求得b/t=9.13,因此建议b/t≤9 。
箱形截面的翼缘板以及压弯构件腹板的宽厚比均可按理论方法求得。本条表9.1.4所建议的宽厚比参考了有关规范或资料的规定。
查找
上节
下节
条文
说明 返回
顶部
说明 返回
顶部
目录导航
- 前言
- 1 总则
- 2 术语和符号
- 2.1 术语
- 2.2 符号
- 3 基本设计规定
- 3.1 设计原则
- 3.2 荷载和荷载效应计算
- 3.3 材料选用
- 3.4 设计指标
- 3.5 结构或构件变形的规定
- 4 受弯构件的计算
- 4.1 强度
- 4.2 整体稳定
- 4.3 局部稳定
- 4.4 组合梁腹板考虑屈曲后强度的计算
- 5 轴心受力构件和拉弯、压弯构件的计算
- 5.1 轴心受力构件
- 5.2 拉弯构件和压弯构件
- 5.3 构件的计算长度和容许长细比
- 5.4 受压构件的局部稳定
- 6 疲劳计算
- 6.1 一般规定
- 6.2 疲劳计算
- 7 连接计算
- 7.1 焊缝连接
- 7.2 紧固件(螺栓、铆钉等)连接
- 7.3 组合工字粱翼缘连接
- 7.4 粱与柱的刚性连接
- 7.5 连接节点处板件的计算
- 7.6 支座
- 8 构造要求
- 8.1 一般规定
- 8.2 焊缝连接
- 8.3 螺栓连接和铆钉连接
- 8.4 结构构件
- 8.5 对吊车梁和吊车桁架(或类似结构)的要求
- 8.6 大跨度屋盖结构
- 8.7 提高寒冷地区结构抗脆断能力的要求
- 8.8 制作、运输和安装
- 8.9 防护和隔热
- 9 塑性设计
- 9.1 一般规定
- 9.2 构件的计算
- 9.3 容许长细比和构造要求
- 10 钢管结构
- 10.1 一般规定
- 10.2 构造要求
- 10.3 杆件和节点承载力
- 11 钢与混凝土组合梁
- 11.1 一般规定
- 11.2 组合梁设计
- 11.3 抗剪连接件的计算
- 11.4 挠度计算
- 11.5 构造要求
- 附录A 结构或构件的变形容许值
- 附录B 梁的整体稳定系数
- 附录C 轴心受压构件的稳定系数
- 附录D 柱的计算长度系数
- 附录E 疲劳计算的构件和连接分类
- 附录F 桁架节点板在斜腹杆压力作用下的稳定计算
- 本规范用词说明
-
笔记需登录后才能查看哦~