目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
8.3 出水管道
8.3.1 泵房外出水管道的布置,应根据泵站总体布置要求,结合地形、地质条件确定,并应符合下列规定:
1 管线应短而直,水力损失小,管道施工及运行管理应方便;
2 管型、管材及管道根数等应经技术经济比较确定;
3 出水管道宜避开地质不良地段,否则应采取安全可靠的工程措施;
4 铺设在填方上的管道,填方应压实处理,做好排水设施;
5 管道跨越山洪沟道时,应满足防洪要求。
8.3.2 出水管道的转弯角宜小于60°,转弯半径宜大于2倍管径。管道在平面和立面上均需转弯且其位置相近时,宜合并成一个空间转弯角。管顶线宜布置在最低压力坡度线下,压力不小于0.02MPa。
8.3.3 管道出水口处应设置断流设施,淹没出流的出水管道出口上缘宜淹没在出水池最低运行水位以下不小于0.3m。
8.3.4 明管设计应符合下列规定:
1 明管转弯处、分岔处、不同管材接头处和明管直线段较长时应设置镇墩,并应符合下列规定:
1)在明管直线段上设置的镇墩,其间距不宜超过100m;
2)两镇墩之间的管道可用支墩或管座支承,镇墩、支墩或管座的地基应坚实稳定;
3)两镇墩之间的钢管管道应设伸缩节,伸缩节应布置在上端。
2 管道支墩的形式和间距应经技术经济分析比较确定。除伸缩节附近处,其他各支墩宜采用等间距布置。预应力钢筋混凝土管道应采用连续管座或每节设2个支墩。
3 管间净距不应小于0.8m,钢管底部应高出管道槽地面0.6m,预应力钢筋混凝土管承插口底部应高出管槽地面0.3m,其他材料的管承插口应预留安装、检修高度。
4 管槽宜设排水沟,坡面宜护砌。当管槽纵向坡度较陡时,沿管线应设人行阶梯便道,其宽度不宜小于1.0m。
5 在严寒地区冬季运行时,可根据需要对管道采取防冻保温措施,严寒地区冬季不运行时应排空管道内的水体。
6 跨越堤防的明管不宜在堤身上设置镇墩。
8.3.5 埋管设计应符合下列规定:
1 埋管管顶最小埋深应在耕植线或最大冻土深度以下;
2 埋管宜采用连续垫座,其包角可取90°~135°;
3 管间净距应结合施工、检修维护要求确定,并不宜小于0.8m;
4 埋入地下的钢管应做防锈处理,当地下水或土壤对管材有侵蚀作用时应采取防腐措施;
5 埋管穿越天然河流、沟道时,埋深宜在最大冲刷深度以下0.5m,采取防护措施后可适当提高。
8.3.6 埋管或管径不小于1.0m明管,宜根据需要设置检查孔,每条管道不宜少于2个。当出水管道线路较长时,应在管线隆起处设置排(补)气阀,其数量和直径应经计算确定。当管线竖向布置平缓时宜间隔1000m左右设置一处通气设施。
8.3.7 管道上作用的荷载应包括自重、水重、水压力、土压力、地下水压力、地面可变荷载、温度荷载、镇墩和支墩不均匀沉降引起的力、施工荷载、地震荷载等。管道结构分析的荷载组合可按表8.3.7采用。
表8.3.7 荷载组合
注:正常水压力系指设计运用情况或地震情况下作用于管道内壁的内水压力;最高、最低水压力系指因事故停泵等水力过渡过程中(校核运用情况)出现在管道内壁的最大、最小内水压力。
8.3.8 出水管道应进行包括水力损失及水锤在内的水力计算。
8.3.9 管道设计包括管道材料选取、结构强度分析、构造要求等内容,应符合国家现行标准《给水排水工程管道结构设计规范》GB50332、《水利水电工程压力钢管设计规范》SL/T281的相关规定。
8.3.10 镇墩和支墩的地基处理应根据地质条件确定。在季节性冻土地区,其埋置深度应大于最大冻土深度,镇墩和支墩四周回填土料宜采用砂砾料。
8.3.11 镇墩应进行抗滑、抗倾稳定及地基强度验算。镇墩抗滑稳定安全系数的允许值:基本荷载组合下为1.30,特殊荷载组合下为1.10;抗倾稳定安全系数的允许值:基本荷载组合下为1.50,特殊荷载组合下为1.20。
条文说明
8.3.1、8.3.2 在结合地形、地质条件布置出水管道线路时,通常会出现几个平面及立面转弯点。这些转弯点转弯角和转弯半径的大小对出水管道的局部水头损失影响很大。现将转弯角α=20°~90°、弯曲半径与管径的比值R/d=1.0~3.0时的局部水头损失系数ξα值及局部水头损失Δh值关系列于表9。
局部水头损失Δh的计算式为:
由于高扬程泵站出水管道长,转弯角较多,如果设置过多的大转弯角,势必加大局部水头损失,从而增大耗电量。因此,本标准规定出水管道的转弯角宜小于60°。但当泵站水位变化幅度大时,部分管道必须在泵房内直立安装,因此,少量设置α=90°的弯管还是允许的。
出水管道转弯半径R值的大小对局部水头损失Δh值有直接影响。这种影响表现为:随着R值的增大,Δh值的增量逐渐变小;但R值过大时,需增大镇墩尺寸,而且增加弯管制作安装的困难。根据我国大中型高扬程泵站工程的实践经验,出水管道直径一般大于500mm,为了有效地减少出水管道的局部水头损失,同时也不过多地增加弯管制作安装的困难,转弯半径R取大于或等于2倍管径是比较适宜的。因此,本标准规定,出水管道的转弯半径宜大于2倍管径。
当管道在平面和立面上均需转弯,且其位置相近时,为了节省镇墩工程量,宜将平面和立面转弯合并成一个空间转弯角。这样,弯管的加工制作并不复杂,而安装对中则可采取一些措施加以解决。
当水泵反转,管道中水流倒流时,如管道立面有较大的向下转弯,镇墩前后的管中流速差别将很大,很可能出现水流脱壁,产生负压,从而影响管道的外压稳定。因此,本标准规定管顶线宜布置在最低压力坡度线下,压力不小于0.02MPa。
8.3.4 明管的分节长度除根据地形条件确定外,还应满足公式(4)的要求:
式中:L——明管的分节长度(m);
α——钢管线性膨胀系数(1/℃);
E——钢管弹性模量(N/cm²);
F——钢管管壁断面面积(cm²);
t1——管道开始滑动时的金属温度(℃);
t2——管道安装合拢时的温度(℃);
A1——钢管自重下滑分力(N);
A2——伸缩接头处的内水压力(N);
A3——水对管壁的摩擦力(N);
A4——温度变化时伸缩接头处填料与管壁的摩擦力(N);
A5——温度变化时管道与支座的摩擦力(N);
L0——伸缩节至镇墩前计算断面的距离(m)。
公式(4)的含义是钢管在温度变化时产生的轴向力,由阻止其变形而产生的阻力所分担,管道不发生滑动,伸缩节处的伸缩变形最小,因而按公式(4)确定明管分节长度是偏于安全的。
至于明管直线段上的镇墩间距,日本规定为120m~150m,美国垦务局及太平洋煤气和电气公司规定小于150m。为了安全起见,本标准规定明管直线段上的镇墩间距不宜超过100m。
8.3.7 作用在管道上的荷载主要有自重、水重、水压力、土压力以及温度荷载等,它们的计算和组合是比较明确的。在高扬程长管道水压力计算中可考虑以下四种工况:一是设计运用工况下,作用在管道上的稳定的内水压力(即正常水压力);二是水泵由于突然断电出现反转的校核运用工况下,产生的最大水锤压力(即最高水压力);三是水泵出现反转的校核运用工况下,当某些管段补气不足时产生的负压(即最低水压力);四是在管道制作或安装工况下,进行水压试验时出现的最大水压力(即试验水压力)。
8.3.8 水力过渡过程是指水泵设计运用工况以外的各种工况水力分析,如本标准第8.3.7条的条文说明所述第二种、第三种、第四种工况下的水压力计算等,其中最重要的是最大水锤压力计算。水锤压力的计算方法常用解析法和图解法等。
8.3.11 镇墩有开敞式和闭合式两种。开敞式镇墩管道固定在镇墩的表面,闭合式镇墩管道埋设在镇墩内。大中型泵站一般都采用闭合式镇墩。为了加强钢管与镇墩混凝土的整体性,需在混凝土中埋设螺栓及抱箍,待管道安装就位后浇入混凝土中。由于镇墩是大体积混凝土,为防止温度变化引起镇墩混凝土开裂,破坏其整体性,应在镇墩表面按构造要求布置钢筋网。坐落在较完整基岩上的镇墩,为减少岩石开挖量和混凝土工程量,可在镇墩底部设置一定数量的锚筋,使部分岩体与镇墩共同受力。锚筋的布置应满足构造要求,并需进行锚固力的分析计算。
作用在镇墩上的荷载,荷载组合及镇墩的稳定计算,可采用常规的分析计算方法。安全系数允许值的选用,是一个涉及工程安全与经济的极为重要的问题。本标准规定,镇墩抗滑稳定安全系数的允许值:基本荷载组合下为1.30,特殊荷载组合下为1.10;抗倾稳定安全系数的允许值:基本荷载组合下为1.50,特殊荷载组合下为1.20。这与国家现行的有关标准中墩台或挡土墙抗滑和抗倾稳定安全系数允许值的规定基本一致。
局部水头损失Δh的计算式为:
表9 出水管道α、R/d与ξα、Δh值关系表
续表9
由表9可知,当R/d值一定时,Δh值随着α值的增加而增加,但增量却逐渐递减;当α值一定时,Δh值随着R/d值的增加而减小,但在R/d值增至1.5以上时,减量几乎是按等数值递减。由于高扬程泵站出水管道长,转弯角较多,如果设置过多的大转弯角,势必加大局部水头损失,从而增大耗电量。因此,本标准规定出水管道的转弯角宜小于60°。但当泵站水位变化幅度大时,部分管道必须在泵房内直立安装,因此,少量设置α=90°的弯管还是允许的。
出水管道转弯半径R值的大小对局部水头损失Δh值有直接影响。这种影响表现为:随着R值的增大,Δh值的增量逐渐变小;但R值过大时,需增大镇墩尺寸,而且增加弯管制作安装的困难。根据我国大中型高扬程泵站工程的实践经验,出水管道直径一般大于500mm,为了有效地减少出水管道的局部水头损失,同时也不过多地增加弯管制作安装的困难,转弯半径R取大于或等于2倍管径是比较适宜的。因此,本标准规定,出水管道的转弯半径宜大于2倍管径。
当管道在平面和立面上均需转弯,且其位置相近时,为了节省镇墩工程量,宜将平面和立面转弯合并成一个空间转弯角。这样,弯管的加工制作并不复杂,而安装对中则可采取一些措施加以解决。
当水泵反转,管道中水流倒流时,如管道立面有较大的向下转弯,镇墩前后的管中流速差别将很大,很可能出现水流脱壁,产生负压,从而影响管道的外压稳定。因此,本标准规定管顶线宜布置在最低压力坡度线下,压力不小于0.02MPa。
8.3.4 明管的分节长度除根据地形条件确定外,还应满足公式(4)的要求:
α——钢管线性膨胀系数(1/℃);
E——钢管弹性模量(N/cm²);
F——钢管管壁断面面积(cm²);
t1——管道开始滑动时的金属温度(℃);
t2——管道安装合拢时的温度(℃);
A1——钢管自重下滑分力(N);
A2——伸缩接头处的内水压力(N);
A3——水对管壁的摩擦力(N);
A4——温度变化时伸缩接头处填料与管壁的摩擦力(N);
A5——温度变化时管道与支座的摩擦力(N);
L0——伸缩节至镇墩前计算断面的距离(m)。
公式(4)的含义是钢管在温度变化时产生的轴向力,由阻止其变形而产生的阻力所分担,管道不发生滑动,伸缩节处的伸缩变形最小,因而按公式(4)确定明管分节长度是偏于安全的。
至于明管直线段上的镇墩间距,日本规定为120m~150m,美国垦务局及太平洋煤气和电气公司规定小于150m。为了安全起见,本标准规定明管直线段上的镇墩间距不宜超过100m。
8.3.7 作用在管道上的荷载主要有自重、水重、水压力、土压力以及温度荷载等,它们的计算和组合是比较明确的。在高扬程长管道水压力计算中可考虑以下四种工况:一是设计运用工况下,作用在管道上的稳定的内水压力(即正常水压力);二是水泵由于突然断电出现反转的校核运用工况下,产生的最大水锤压力(即最高水压力);三是水泵出现反转的校核运用工况下,当某些管段补气不足时产生的负压(即最低水压力);四是在管道制作或安装工况下,进行水压试验时出现的最大水压力(即试验水压力)。
8.3.8 水力过渡过程是指水泵设计运用工况以外的各种工况水力分析,如本标准第8.3.7条的条文说明所述第二种、第三种、第四种工况下的水压力计算等,其中最重要的是最大水锤压力计算。水锤压力的计算方法常用解析法和图解法等。
8.3.11 镇墩有开敞式和闭合式两种。开敞式镇墩管道固定在镇墩的表面,闭合式镇墩管道埋设在镇墩内。大中型泵站一般都采用闭合式镇墩。为了加强钢管与镇墩混凝土的整体性,需在混凝土中埋设螺栓及抱箍,待管道安装就位后浇入混凝土中。由于镇墩是大体积混凝土,为防止温度变化引起镇墩混凝土开裂,破坏其整体性,应在镇墩表面按构造要求布置钢筋网。坐落在较完整基岩上的镇墩,为减少岩石开挖量和混凝土工程量,可在镇墩底部设置一定数量的锚筋,使部分岩体与镇墩共同受力。锚筋的布置应满足构造要求,并需进行锚固力的分析计算。
作用在镇墩上的荷载,荷载组合及镇墩的稳定计算,可采用常规的分析计算方法。安全系数允许值的选用,是一个涉及工程安全与经济的极为重要的问题。本标准规定,镇墩抗滑稳定安全系数的允许值:基本荷载组合下为1.30,特殊荷载组合下为1.10;抗倾稳定安全系数的允许值:基本荷载组合下为1.50,特殊荷载组合下为1.20。这与国家现行的有关标准中墩台或挡土墙抗滑和抗倾稳定安全系数允许值的规定基本一致。
查找
上节
下节
条文
说明 返回
顶部
说明 返回
顶部
- 上一节:8.2 前池及进水池
- 下一节:8.4 出水池及压力水箱
目录导航
- 前言
- 1 总则
- 2 术语
- 3 泵站等级及标准
- 4 泵站主要设计参数
- 4.1 设计流量
- 4.2 特征水位
- 4.3 特征扬程
- 5 站址选择
- 5.1 一般规定
- 5.2 泵站站址选择
- 6 总体布置
- 6.1 一般规定
- 6.2 泵站布置形式
- 7 泵房
- 7.1 泵房布置
- 7.2 防渗排水设计
- 7.3 稳定分析
- 7.4 地基计算及处理
- 7.5 主要结构计算
- 7.6 结构抗震设计及措施
- 8 进出水建筑物
- 8.1 引渠
- 8.2 前池及进水池
- 8.3 出水管道
- 8.4 出水池及压力水箱
- 9 其他形式泵站
- 9.1 一般规定
- 9.2 竖井式泵站
- 9.3 缆车式泵站
- 9.4 浮船式泵站
- 9.5 潜水泵站
- 9.6 潜没式泵站
- 10 水力机械及辅助设备
- 10.1 主泵
- 10.2 进出水流道
- 10.3 进水管道及泵房内出水管道
- 10.4 过渡过程及产生危害的防护
- 10.5 真空及充水系统
- 10.6 排水系统
- 10.7 供水系统
- 10.8 压缩空气系统
- 10.9 供油系统
- 10.10 水力监测系统
- 10.11 起重设备
- 10.12 采暖通风与空气调节
- 10.13 水力机械设备布置
- 10.14 机修设备
- 11 电气
- 11.1 供电系统
- 11.2 电气主接线
- 11.3 主电动机选择
- 11.4 主变压器选择
- 11.5 高压配电装置选择
- 11.6 无功功率补偿
- 11.7 站用电
- 11.8 室内外主要电气设备布置及电缆敷设
- 11.9 电气设备的防火
- 11.10 过电压保护及接地装置
- 11.11 照明
- 11.12 继电保护及安全自动装置
- 11.13 计算机监控系统
- 11.14 视频监视系统
- 11.15 信息管理系统
- 11.16 测量表计装置
- 11.17 操作电源
- 11.18 通信
- 11.19 电气试验设备
- 11.20 电气节能
- 12 闸门、拦污栅及启闭设备
- 12.1 一般规定
- 12.2 拦污栅及清污机
- 12.3 拍门及快速闸门
- 12.4 启闭设备
- 13 泵站更新改造设计
- 13.1 一般规定
- 13.2 泵站建筑物
- 13.3 机电设备及金属结构
- 14 工程安全监测
- 附录A 泵站稳定分析有关参数
- 附录B 快速闸门闭门速度及撞击力近似计算
- 本标准用词说明
- 引用标准名录
-
笔记需登录后才能查看哦~