目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
3.5 截面板件宽厚比等级
3.5.1 进行受弯和压弯构件计算时,截面板件宽厚比等级及限值应符合表3.5.1的规定,其中参数α0应按下式计算:
式中:σmax——腹板计算边缘的最大压应力(N/mm2);
σmin——腹板计算高度另一边缘相应的应力(N/mm2),压应力取正值,拉应力取负值。
3.5.2 当按本标准第17章进行抗震性能化设计时,支撑截面板件宽厚比等级及限值应符合表3.5.2的规定。
注:w为角钢平直段长度。
σmin——腹板计算高度另一边缘相应的应力(N/mm2),压应力取正值,拉应力取负值。
条文说明
截面板件宽厚比指截面板件平直段的宽度和厚度之比,受弯或压弯构件腹板平直段的高度与腹板厚度之比也可称为板件高厚比。
3.5.1 绝大多数钢构件由板件构成,而板件宽厚比大小直接决定了钢构件的承载力和受弯及压弯构件的塑性转动变形能力,因此钢构件截面的分类,是钢结构设计技术的基础,尤其是钢结构抗震设计方法的基础。原规范关于截面板件宽厚比的规定分散在受弯构件、压弯构件的计算及塑性设计各章节中。
根据截面承载力和塑性转动变形能力的不同,国际上一般将钢构件截面分为四类,考虑到我国在受弯构件设计中采用截面塑性发展系数γx,本次修订将截面根据其板件宽厚比分为5个等级。
1 S1级:可达全截面塑性,保证塑性铰具有塑性设计要求的转动能力,且在转动过程中承载力不降低,称为一级塑性截面,也可称为塑性转动截面;此时图1所示的曲线1可以表示其弯矩-曲率关系,p2一般要求达到塑性弯矩Mp除以弹性初始刚度得到的曲率p的8倍~15倍;
2 S2级截面:可达全截面塑性,但由于局部屈曲,塑性铰转动能力有限,称为二级塑性截面;此时的弯矩-曲率关系见图1所示的曲线2,p1大约是p的2倍~3倍;
3 S3级截面:翼缘全部屈服,腹板可发展不超过1/4截面高度的塑性,称为弹塑性截面;作为梁时,其弯矩-曲率关系如图1所示的曲线3;
4 S4级截面:边缘纤维可达屈服强度,但由于局部屈曲而不能发展塑性,称为弹性截面;作为梁时,其弯矩-曲率关系如图1所示的曲线4;
5 S5级截面:在边缘纤维达屈服应力前,腹板可能发生局部屈曲,称为薄壁截面;作为梁时,其弯矩-曲率关系为图1所示的曲线5。
式中:K——屈曲系数;
E——钢材弹性模量;
fy——钢材屈服强度;
v——钢材的泊松比。
五级分类的界限宽厚比分别是(b1/t)y的0.5、0.6、0.7、0.8和1.1倍取整数。带有自由边的板件,局部屈曲后可能带来截面刚度中心的变化,从而改变构件的受力,所以即使S5级可采用有效截面法计算承载力,本次修订时仍然对板件宽厚比给予限制。
对箱形截面的翼缘,四边简支板的屈曲系数K为4,按式(1)计算,临界应力达到屈服应力fy=235N/mm2时板件宽厚比为56.29。S1级、S2级、S3级和S4级分类的界限宽厚比分别为(b/t)y的0.5、0.6、0.7和0.8倍并适当调整成整数。对S5级,因为两纵向边支承的翼缘有屈曲后强度,所以板件宽厚比不再作额外限制。四边简支腹板承受压弯荷载时,屈曲系数按下式计算,其中参数α0按本标准式(3.5.1)计算:
屈服宽厚比、0.5倍~0.8倍的屈服宽厚比,以及四个分级界限宽厚比的对比见图2,考虑到不同等级的宽厚比的用途不同,没有严格地按照屈服高厚比的倍数,如厂房跨度大,截面高,截面希望高一些,腹板较薄,得到翼缘的约束大,宽厚比适当放大,而截面宽厚比等级为S1级或S2级的,往往是抗震设计的民用建筑,在作为框架梁设计为塑性耗能区时(α0=2),要求在设防烈度的地震作用下形成塑性铰,所以宽厚比反而比0.5、0.6的倍数更加严格。
缺陷敏感型的理想圆柱壳,其临界应力是σcr=0.3(Et/D),其屈曲荷载严重依赖于圆柱壳初始缺陷的大小,而民用建筑的钢管构件不属于薄壳范畴,初始弯曲相对于板厚一般小于w0/t<
0.2,此时真实的临界荷载与理想弹性临界荷载的比值在0.5左右,即σcr≈0.15(Et/D)=fy,临界应力达到屈服应力的直径厚度比值计算如下:
宽厚比/屈服径厚比为0.5、0.6、0.7和0.8的数据也在表2给出,本次修订的S1级、S2级、S3级和S4级分级界限采用了欧洲钢结构设计规范EC3:Design of steel structures的规定。
综上所述,各种截面屈曲宽厚比和标准取值比较见表2。
另外,表3.5.1压弯构件腹板的截面板件宽厚比等级限值与其应力状态相关,除塑性耗能区部分及S5级截面,其值可考虑采用εσ修正,εσ为应力修正因子,。
3.5.1 绝大多数钢构件由板件构成,而板件宽厚比大小直接决定了钢构件的承载力和受弯及压弯构件的塑性转动变形能力,因此钢构件截面的分类,是钢结构设计技术的基础,尤其是钢结构抗震设计方法的基础。原规范关于截面板件宽厚比的规定分散在受弯构件、压弯构件的计算及塑性设计各章节中。
根据截面承载力和塑性转动变形能力的不同,国际上一般将钢构件截面分为四类,考虑到我国在受弯构件设计中采用截面塑性发展系数γx,本次修订将截面根据其板件宽厚比分为5个等级。
1 S1级:可达全截面塑性,保证塑性铰具有塑性设计要求的转动能力,且在转动过程中承载力不降低,称为一级塑性截面,也可称为塑性转动截面;此时图1所示的曲线1可以表示其弯矩-曲率关系,p2一般要求达到塑性弯矩Mp除以弹性初始刚度得到的曲率p的8倍~15倍;
2 S2级截面:可达全截面塑性,但由于局部屈曲,塑性铰转动能力有限,称为二级塑性截面;此时的弯矩-曲率关系见图1所示的曲线2,p1大约是p的2倍~3倍;
3 S3级截面:翼缘全部屈服,腹板可发展不超过1/4截面高度的塑性,称为弹塑性截面;作为梁时,其弯矩-曲率关系如图1所示的曲线3;
4 S4级截面:边缘纤维可达屈服强度,但由于局部屈曲而不能发展塑性,称为弹性截面;作为梁时,其弯矩-曲率关系如图1所示的曲线4;
5 S5级截面:在边缘纤维达屈服应力前,腹板可能发生局部屈曲,称为薄壁截面;作为梁时,其弯矩-曲率关系为图1所示的曲线5。
截面的分类决定于组成截面板件的分类。
对工字形截面的翼缘,三边简支一边自由的板件的屈曲系数K为0.43,按式(1)计算,临界应力达到屈服应力fy=235N/mm2时板件宽厚比为18.6。
E——钢材弹性模量;
fy——钢材屈服强度;
v——钢材的泊松比。
五级分类的界限宽厚比分别是(b1/t)y的0.5、0.6、0.7、0.8和1.1倍取整数。带有自由边的板件,局部屈曲后可能带来截面刚度中心的变化,从而改变构件的受力,所以即使S5级可采用有效截面法计算承载力,本次修订时仍然对板件宽厚比给予限制。
对箱形截面的翼缘,四边简支板的屈曲系数K为4,按式(1)计算,临界应力达到屈服应力fy=235N/mm2时板件宽厚比为56.29。S1级、S2级、S3级和S4级分类的界限宽厚比分别为(b/t)y的0.5、0.6、0.7和0.8倍并适当调整成整数。对S5级,因为两纵向边支承的翼缘有屈曲后强度,所以板件宽厚比不再作额外限制。四边简支腹板承受压弯荷载时,屈曲系数按下式计算,其中参数α0按本标准式(3.5.1)计算:
缺陷敏感型的理想圆柱壳,其临界应力是σcr=0.3(Et/D),其屈曲荷载严重依赖于圆柱壳初始缺陷的大小,而民用建筑的钢管构件不属于薄壳范畴,初始弯曲相对于板厚一般小于w0/t<
宽厚比/屈服径厚比为0.5、0.6、0.7和0.8的数据也在表2给出,本次修订的S1级、S2级、S3级和S4级分级界限采用了欧洲钢结构设计规范EC3:Design of steel structures的规定。
综上所述,各种截面屈曲宽厚比和标准取值比较见表2。
查找
上节
下节
条文
说明 返回
顶部
说明 返回
顶部
- 上一节:3.4 结构或构件变形及舒适度的规定
- 下一节:4 材料
目录导航
- 前言
- 1 总则
- 2 术语和符号
- 2.1 术语
- 2.2 符号
- 3 基本设计规定
- 3.1 一般规定
- 3.2 结构体系
- 3.3 作用
- 3.4 结构或构件变形及舒适度的规定
- 3.5 截面板件宽厚比等级
- 4 材料
- 4.1 钢材牌号及标准
- 4.2 连接材料型号及标准
- 4.3 材料选用
- 4.4 设计指标和设计参数
- 5 结构分析与稳定性设计
- 5.1 一般规定
- 5.2 初始缺陷
- 5.3 一阶弹性分析与设计
- 5.4 二阶P-△弹性分析与设计
- 5.5 直接分析设计法
- 6 受弯构件
- 6.1 受弯构件的强度
- 6.2 受弯构件的整体稳定
- 6.3 局部稳定
- 6.4 焊接截面梁腹板考虑屈曲后强度的计算
- 6.5 腹板开孔要求
- 6.6 梁的构造要求
- 7 轴心受力构件
- 7.1 截面强度计算
- 7.2 轴心受压构件的稳定性计算
- 7.3 实腹式轴心受压构件的局部稳定和屈曲后强度
- 7.4 轴心受力构件的计算长度和容许长细比
- 7.5 轴心受压构件的支撑
- 7.6 单边连接的单角钢
- 8 拉弯、压弯构件
- 8.1 截面强度计算
- 8.2 构件的稳定性计算
- 8.3 框架柱的计算长度
- 8.4 压弯构件的局部稳定和屈曲后强度
- 8.5 承受次弯矩的桁架杆件
- 9 加劲钢板剪力墙
- 9.1 一般规定
- 9.2 加劲钢板剪力墙的计算
- 9.3 构造要求
- 10 塑性及弯矩调幅设计
- 10.1 一般规定
- 10.2 弯矩调幅设计要点
- 10.3 构件的计算
- 10.4 容许长细比和构造要求
- 11 连 接
- 11.1 一般规定
- 11.2 焊缝连接计算
- 11.3 焊缝连接构造要求
- 11.4 紧固件连接计算
- 11.5 紧固件连接构造要求
- 11.6 销轴连接
- 11.7 钢管法兰连接构造
- 12 节点
- 12.1 一般规定
- 12.2 链接板节点
- 12.3 梁柱连接节点
- 12.4 铸钢节点
- 12.5 预应力索节点
- 12.6 支座
- 12.7 柱脚
- 13 钢管链接节点
- 13.1 一般规定
- 13.2 构造要求
- 13.3 圆钢管直接焊接节点和局部加劲节点的计算
- 13.4 矩形钢管直接焊接节点和局部加劲节点的计算
- 14 钢与混凝土组合梁
- 14.1 一般规定
- 14.2 组合梁设计
- 14.3 抗剪连接件的计算
- 14.4 挠度计算
- 14.5 负弯矩区裂缝宽度计算
- 14.6 纵向抗剪计算
- 14.7 构造要求
- 15 钢管混凝土柱及节点
- 15.1 一般规定
- 15.2 矩形钢管混凝土柱
- 15.3 圆形钢管混凝土柱
- 15.4 钢管混凝土柱与钢梁连接节点
- 16 疲劳计算及防脆断设计
- 16.1 一般规定
- 16.2 疲劳计算
- 16.3 构造要求
- 16.4 防脆断设计
- 17 钢结构抗震性能化设计
- 17.1 一般规定
- 17.2 计算要点
- 17.3 基本抗震措施
- 18 钢结构防护
- 18.1 抗火设计
- 18.2 防腐蚀设计
- 18.3 隔热
- 附录A 常用建筑结构体
- A.1 单层钢结构
- A.2 多高层钢结构
- A.3 大跨度钢结构
- 附录B 结构或构件的变形容许值
- B.1 受弯构件的挠度容许值
- B.2 结构的位移容许值
- 附录C 梁的整体稳定系数
- 附录D 轴心受压构件的稳定系数
- 附录E 柱的计算长度系数
- 附录F 加劲钢板剪力墙的弹性屈曲临界应力
- F.1 仅设置竖向加劲的钢板剪力墙
- F.2 设置水平加劲的钢板剪力墙
- F.3 同时设置水平和竖向加劲肋的钢板剪力墙
- 附录G 桁架节点板在斜腹杆压力作用下的稳定计算
- 附录H 无加劲钢管直接焊接节点刚度判别
- 附录J 钢与混凝土组合梁的疲劳验算
- 附录K 疲劳计算的构件和连接分类
- 本标准用词说明
- 引用标准名录
-
笔记需登录后才能查看哦~