目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
6.2 受弯构件的整体稳定
6.2.1 当铺板密铺在梁的受压翼缘上并与其牢固相连,能阻止梁受压翼缘的侧向位移时,可不计算梁的整体稳定性。
6.2.2 除本标准第6.2.1条所规定情况外,在最大刚度主平面内受弯的构件,其整体稳定性应按下式计算:
式中:Mx——绕强轴作用的最大弯矩设计值(N·mm);
Wx——按受压最大纤维确定的梁毛截面模量,当截面板件宽厚比等级为S1级、S2级、S3级或S4级时,应取全截面模量;当截面板件宽厚比等级为S5级时,应取有效截面模量,均匀受压翼缘有效外伸宽度可取15εk,腹板有效截面可按本标准第8.4.2条的规定采用(mm3);
φb——梁的整体稳定性系数,应按本标准附录C确定。
6.2.3 除本标准第6.2.1条所指情况外,在两个主平面受弯的H型钢截面或工字形截面构件,其整体稳定性应按下式计算:
式中:Wy——按受压最大纤维确定的对y轴的毛截面模量(mm3);
φb——绕强轴弯曲所确定的梁整体稳定系数,应按本标准附录C计算。
6.2.4 当箱形截面简支梁符合本标准第6.2.1条的要求或其截面尺寸(图6.2.4)满足h/b0≤6,l1/b0≤95ε2k时,可不计算整体稳定性,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧向支承)。
6.2.6 用作减小梁受压翼缘自由长度的侧向支撑,其支撑力应将梁的受压翼缘视为轴心压杆计算。
6.2.7 支座承担负弯矩且梁顶有混凝土楼板时,框架梁下翼缘的稳定性计算应符合下列规定:
1 当λn,b≤0.45时,可不计算框架梁下翼缘的稳定性。
2 当不满足本条第1款时,框架梁下翼缘的稳定性应按下列公式计算:
式中:b1——受压翼缘的宽度(mm);
t1——受压翼缘的厚度(mm);
W1x——弯矩作用平面内对受压最大纤维的毛截面模量(mm3);
φd——稳定系数,根据换算长细比λe按本标准附录D表D.0.2采用;
λn,b——正则化长细比;
σcr——畸变屈曲临界应力(N/mm2);
l——当框架主梁支承次梁且次梁高度不小于主梁高度一半时,取次梁到框架柱的净距;除此情况外,取梁净距的一半(mm)。
3 当不满足本条第1款、第2款时,在侧向未受约束的受压翼缘区段内,应设置隅撑或沿梁长设间距不大于2倍梁高并与梁等宽的横向加劲肋。
6.2.2 除本标准第6.2.1条所规定情况外,在最大刚度主平面内受弯的构件,其整体稳定性应按下式计算:
Wx——按受压最大纤维确定的梁毛截面模量,当截面板件宽厚比等级为S1级、S2级、S3级或S4级时,应取全截面模量;当截面板件宽厚比等级为S5级时,应取有效截面模量,均匀受压翼缘有效外伸宽度可取15εk,腹板有效截面可按本标准第8.4.2条的规定采用(mm3);
φb——梁的整体稳定性系数,应按本标准附录C确定。
6.2.3 除本标准第6.2.1条所指情况外,在两个主平面受弯的H型钢截面或工字形截面构件,其整体稳定性应按下式计算:
φb——绕强轴弯曲所确定的梁整体稳定系数,应按本标准附录C计算。
6.2.4 当箱形截面简支梁符合本标准第6.2.1条的要求或其截面尺寸(图6.2.4)满足h/b0≤6,l1/b0≤95ε2k时,可不计算整体稳定性,l1为受压翼缘侧向支承点间的距离(梁的支座处视为有侧向支承)。
图6.2.4 箱形截面
6.2.5 梁的支座处应采取构造措施,以防止梁端截面的扭转。当简支梁仅腹板与相邻构件相连,钢梁稳定性计算时侧向支承点距离应取实际距离的1.2倍。6.2.6 用作减小梁受压翼缘自由长度的侧向支撑,其支撑力应将梁的受压翼缘视为轴心压杆计算。
6.2.7 支座承担负弯矩且梁顶有混凝土楼板时,框架梁下翼缘的稳定性计算应符合下列规定:
1 当λn,b≤0.45时,可不计算框架梁下翼缘的稳定性。
2 当不满足本条第1款时,框架梁下翼缘的稳定性应按下列公式计算:
t1——受压翼缘的厚度(mm);
W1x——弯矩作用平面内对受压最大纤维的毛截面模量(mm3);
φd——稳定系数,根据换算长细比λe按本标准附录D表D.0.2采用;
λn,b——正则化长细比;
σcr——畸变屈曲临界应力(N/mm2);
l——当框架主梁支承次梁且次梁高度不小于主梁高度一半时,取次梁到框架柱的净距;除此情况外,取梁净距的一半(mm)。
3 当不满足本条第1款、第2款时,在侧向未受约束的受压翼缘区段内,应设置隅撑或沿梁长设间距不大于2倍梁高并与梁等宽的横向加劲肋。
条文说明
6.2.1 钢梁整体失去稳定性时,梁将发生较大的侧向弯曲和扭转变形,因此为了提高梁的稳定承载能力,任何钢梁在其端部支承处都应采取构造措施,以防止其端部截面的扭转。当有铺板密铺在梁的受压翼缘上并与其牢固相连,能阻止受压翼缘的侧向位移时,梁就不会丧失整体稳定,因此也不必计算梁的整体稳定性。
6.2.3 在两个主平面内受弯的构件,其整体稳定性计算很复杂,本条所列公式(6.2.3)是一个经验公式。1978年国内曾进行过少数几根双向受弯梁的荷载试验,分三组共7根,包括热轧工字钢Ⅰ18和Ⅰ24a与一组单轴对称加强上翼缘的焊接工字梁。每组梁中1根为单向受弯,其余1根或2根为双向受弯(最大刚度平面内受纯弯和跨度中点上翼缘处受一水平集中力)以资对比。试验结果表明,双向受弯梁的破坏荷载都比单向低,三组梁破坏荷载的比值各为0.91、0.90和0.88。双向受弯梁跨度中点上翼缘的水平位移和跨度中点截面扭转角也都远大于单向受弯梁。
用上述少数试验结果验证本条公式(6.2.3),证明是可行的。公式左边第二项分母中引进绕弱轴的截面塑性发展系数γy,并不意味绕弱轴弯曲出现塑性,而是适当降低第二项的影响,并使公式与本章式(6.1.1)和式(6.2.2)形式上相协调。
6.2.4 对箱形截面简支梁,本条直接给出了其应满足的最大h/b0和l1/b0比值。满足了这些比值,梁的整体稳定性就得到保证。由于箱形截面的抗侧向弯曲刚度和抗扭转刚度远远大于工字形截面,整体稳定性很强,本条规定的h/b0和l1/b0值很容易得到满足。
6.2.5 梁端支座,弯曲铰支容易理解也容易达成,扭转铰支却往往被疏忽,因此本条特别规定。对仅腹板连接的钢梁,因为钢梁腹板容易变形,抗扭刚度小,并不能保证梁端截面不发生扭转,因此在稳定性计算时,计算长度应放大。
6.2.6 减小梁侧向计算长度的支撑,应设置在受压翼缘,此时对支撑的设计可以参照本标准第7.5.1条用于减小压杆计算长度的侧向支撑。
6.2.7 本条针对框架主梁的负弯矩区的稳定性计算提出,负弯矩区下翼缘受压,上翼缘受拉,且上翼缘有楼板起侧向支撑和提供扭转约束,因此负弯矩区的失稳是畸变失稳。
将下翼缘作为压杆,腹板作为对下翼缘提供侧向弹性支撑的部件,上翼缘看成固定,则可以求出纯弯简支梁下翼缘发生畸变屈曲的临界应力,考虑到支座条件接近嵌固,弯矩快速下降变成正弯矩等有利因素,以及实际结构腹板高厚比的限值,腹板对翼缘能够提供强大的侧向约束,因此框架梁负弯矩区的畸变屈曲并不是一个需要特别加以精确计算的问题,因此本条提出了很简单的畸变屈曲临界应力公式(6.2.7-4)。
正则化长细比小于或等于0.45时,弹塑性畸变屈曲应力基本达到钢材的屈服强度,此时截面尺寸刚好满足式(6.2.7-1)。对于抗震设计,要求应更加严格。
不满足式(6.2.7-1),则设置加劲肋能够为下翼缘提供更加刚强的约束,并带动楼板对框架梁提供扭转约束。设置加劲肋后,刚度很大,一般不再需要计算整体稳定和畸变屈曲。
6.2.3 在两个主平面内受弯的构件,其整体稳定性计算很复杂,本条所列公式(6.2.3)是一个经验公式。1978年国内曾进行过少数几根双向受弯梁的荷载试验,分三组共7根,包括热轧工字钢Ⅰ18和Ⅰ24a与一组单轴对称加强上翼缘的焊接工字梁。每组梁中1根为单向受弯,其余1根或2根为双向受弯(最大刚度平面内受纯弯和跨度中点上翼缘处受一水平集中力)以资对比。试验结果表明,双向受弯梁的破坏荷载都比单向低,三组梁破坏荷载的比值各为0.91、0.90和0.88。双向受弯梁跨度中点上翼缘的水平位移和跨度中点截面扭转角也都远大于单向受弯梁。
用上述少数试验结果验证本条公式(6.2.3),证明是可行的。公式左边第二项分母中引进绕弱轴的截面塑性发展系数γy,并不意味绕弱轴弯曲出现塑性,而是适当降低第二项的影响,并使公式与本章式(6.1.1)和式(6.2.2)形式上相协调。
6.2.4 对箱形截面简支梁,本条直接给出了其应满足的最大h/b0和l1/b0比值。满足了这些比值,梁的整体稳定性就得到保证。由于箱形截面的抗侧向弯曲刚度和抗扭转刚度远远大于工字形截面,整体稳定性很强,本条规定的h/b0和l1/b0值很容易得到满足。
6.2.5 梁端支座,弯曲铰支容易理解也容易达成,扭转铰支却往往被疏忽,因此本条特别规定。对仅腹板连接的钢梁,因为钢梁腹板容易变形,抗扭刚度小,并不能保证梁端截面不发生扭转,因此在稳定性计算时,计算长度应放大。
6.2.6 减小梁侧向计算长度的支撑,应设置在受压翼缘,此时对支撑的设计可以参照本标准第7.5.1条用于减小压杆计算长度的侧向支撑。
6.2.7 本条针对框架主梁的负弯矩区的稳定性计算提出,负弯矩区下翼缘受压,上翼缘受拉,且上翼缘有楼板起侧向支撑和提供扭转约束,因此负弯矩区的失稳是畸变失稳。
将下翼缘作为压杆,腹板作为对下翼缘提供侧向弹性支撑的部件,上翼缘看成固定,则可以求出纯弯简支梁下翼缘发生畸变屈曲的临界应力,考虑到支座条件接近嵌固,弯矩快速下降变成正弯矩等有利因素,以及实际结构腹板高厚比的限值,腹板对翼缘能够提供强大的侧向约束,因此框架梁负弯矩区的畸变屈曲并不是一个需要特别加以精确计算的问题,因此本条提出了很简单的畸变屈曲临界应力公式(6.2.7-4)。
正则化长细比小于或等于0.45时,弹塑性畸变屈曲应力基本达到钢材的屈服强度,此时截面尺寸刚好满足式(6.2.7-1)。对于抗震设计,要求应更加严格。
不满足式(6.2.7-1),则设置加劲肋能够为下翼缘提供更加刚强的约束,并带动楼板对框架梁提供扭转约束。设置加劲肋后,刚度很大,一般不再需要计算整体稳定和畸变屈曲。
查找
上节
下节
条文
说明 返回
顶部
说明 返回
顶部
- 上一节:6.1 受弯构件的强度
- 下一节:6.3 局部稳定
目录导航
- 前言
- 1 总则
- 2 术语和符号
- 2.1 术语
- 2.2 符号
- 3 基本设计规定
- 3.1 一般规定
- 3.2 结构体系
- 3.3 作用
- 3.4 结构或构件变形及舒适度的规定
- 3.5 截面板件宽厚比等级
- 4 材料
- 4.1 钢材牌号及标准
- 4.2 连接材料型号及标准
- 4.3 材料选用
- 4.4 设计指标和设计参数
- 5 结构分析与稳定性设计
- 5.1 一般规定
- 5.2 初始缺陷
- 5.3 一阶弹性分析与设计
- 5.4 二阶P-△弹性分析与设计
- 5.5 直接分析设计法
- 6 受弯构件
- 6.1 受弯构件的强度
- 6.2 受弯构件的整体稳定
- 6.3 局部稳定
- 6.4 焊接截面梁腹板考虑屈曲后强度的计算
- 6.5 腹板开孔要求
- 6.6 梁的构造要求
- 7 轴心受力构件
- 7.1 截面强度计算
- 7.2 轴心受压构件的稳定性计算
- 7.3 实腹式轴心受压构件的局部稳定和屈曲后强度
- 7.4 轴心受力构件的计算长度和容许长细比
- 7.5 轴心受压构件的支撑
- 7.6 单边连接的单角钢
- 8 拉弯、压弯构件
- 8.1 截面强度计算
- 8.2 构件的稳定性计算
- 8.3 框架柱的计算长度
- 8.4 压弯构件的局部稳定和屈曲后强度
- 8.5 承受次弯矩的桁架杆件
- 9 加劲钢板剪力墙
- 9.1 一般规定
- 9.2 加劲钢板剪力墙的计算
- 9.3 构造要求
- 10 塑性及弯矩调幅设计
- 10.1 一般规定
- 10.2 弯矩调幅设计要点
- 10.3 构件的计算
- 10.4 容许长细比和构造要求
- 11 连 接
- 11.1 一般规定
- 11.2 焊缝连接计算
- 11.3 焊缝连接构造要求
- 11.4 紧固件连接计算
- 11.5 紧固件连接构造要求
- 11.6 销轴连接
- 11.7 钢管法兰连接构造
- 12 节点
- 12.1 一般规定
- 12.2 链接板节点
- 12.3 梁柱连接节点
- 12.4 铸钢节点
- 12.5 预应力索节点
- 12.6 支座
- 12.7 柱脚
- 13 钢管链接节点
- 13.1 一般规定
- 13.2 构造要求
- 13.3 圆钢管直接焊接节点和局部加劲节点的计算
- 13.4 矩形钢管直接焊接节点和局部加劲节点的计算
- 14 钢与混凝土组合梁
- 14.1 一般规定
- 14.2 组合梁设计
- 14.3 抗剪连接件的计算
- 14.4 挠度计算
- 14.5 负弯矩区裂缝宽度计算
- 14.6 纵向抗剪计算
- 14.7 构造要求
- 15 钢管混凝土柱及节点
- 15.1 一般规定
- 15.2 矩形钢管混凝土柱
- 15.3 圆形钢管混凝土柱
- 15.4 钢管混凝土柱与钢梁连接节点
- 16 疲劳计算及防脆断设计
- 16.1 一般规定
- 16.2 疲劳计算
- 16.3 构造要求
- 16.4 防脆断设计
- 17 钢结构抗震性能化设计
- 17.1 一般规定
- 17.2 计算要点
- 17.3 基本抗震措施
- 18 钢结构防护
- 18.1 抗火设计
- 18.2 防腐蚀设计
- 18.3 隔热
- 附录A 常用建筑结构体
- A.1 单层钢结构
- A.2 多高层钢结构
- A.3 大跨度钢结构
- 附录B 结构或构件的变形容许值
- B.1 受弯构件的挠度容许值
- B.2 结构的位移容许值
- 附录C 梁的整体稳定系数
- 附录D 轴心受压构件的稳定系数
- 附录E 柱的计算长度系数
- 附录F 加劲钢板剪力墙的弹性屈曲临界应力
- F.1 仅设置竖向加劲的钢板剪力墙
- F.2 设置水平加劲的钢板剪力墙
- F.3 同时设置水平和竖向加劲肋的钢板剪力墙
- 附录G 桁架节点板在斜腹杆压力作用下的稳定计算
- 附录H 无加劲钢管直接焊接节点刚度判别
- 附录J 钢与混凝土组合梁的疲劳验算
- 附录K 疲劳计算的构件和连接分类
- 本标准用词说明
- 引用标准名录
-
笔记需登录后才能查看哦~