目 录 上一节 下一节 查 找 检 索 手机阅读 总目录 问题反馈
6.3 局部稳定
6.3.2 焊接截面梁腹板配置加劲肋应符合下列规定:
图6.3.2 加劲肋布置
2 直接承受动力荷载的吊车梁及类似构件,应按下列规定配置加劲肋(图6.3.2):
1) 当h0/tw>80εk时,应配置横向加劲肋;
2) 当受压翼缘扭转受到约束且h0/tw>170εk、受压翼缘扭转未受到约束且h0/tw>150εk,或按计算需要时,应在弯曲应力较大区格的受压区增加配置纵向加劲肋。局部压应力很大的梁,必要时尚宜在受压区配置短加劲肋;对单轴对称梁,当确定是否要配置纵向加劲肋时,h0应取腹板受压区高度hc的2倍。
3 不考虑腹板屈曲后强度时,当h0/tw>80εk时,宜配置横向加劲肋。
4 h0/tw不宜超过250。
5 梁的支座处和上翼缘受有较大固定集中荷载处,宜设置支承加劲肋。
6 腹板的计算高度h0应按下列规定采用:对轧制型钢梁,为腹板与上、下翼缘相接处两内弧起点间的距离;对焊接截面梁,为腹板高度;对高强度螺栓连接(或铆接)梁,为上、下翼缘与腹板连接的高强度螺栓(或铆钉)线间最近距离(图6.3.2)。
6.3.3 仅配置横向加劲肋的腹板[图6.3.2(a)],其各区格的局部稳定应按下列公式计算:
σcr应按下列公式计算:
当梁受压翼缘扭转受到约束时:
当梁受压翼缘扭转未受到约束时:
τcr应按下列公式计算:
σc,cr应按下列公式计算:
式中:σ——计算腹板区格内,由平均弯矩产生的腹板计算高度边缘的弯曲压应力(N/mm2);
τ——所计算腹板区格内,由平均剪力产生的腹板平均剪应力(N/mm2);
σc——腹板计算高度边缘的局部压应力,应按本标准式(6.1.4-1)计算,但取式中的ψ=1.0(N/mm2);
hw——腹板高度(mm);
σcr、τcr、σc,cr——各种应力单独作用下的临界应力(N/mm2);
λn,b——梁腹板受弯计算的正则化宽厚比;
hc——梁腹板弯曲受压区高度,对双轴对称截面2hc=h0(mm);
λn,s——梁腹板受剪计算的正则化宽厚比;
η——简支梁取1.11,框架梁梁端最大应力区取1;
λn,c——梁腹板受局部压力计算时的正则化宽厚比。
6.3.4 同时用横向加劲肋和纵向加劲肋加强的腹板[图6.3.2(b)、图6.3.2(c)],其局部稳定性应按下列公式计算:
1 受压翼缘与纵向加劲肋之间的区格:
其中σcrl、τcrl、σc,crll应分别按下列方法计算:
1)σcrl应按本标准式(6.3.3-3)~式(6.3.3-5)计算:但式中的λn,b改用下列λn,bl代替。
当梁受压翼缘扭转受到约束时:
当梁受压翼缘扭转未受到约束时:
σ2——所计算区格内由平均弯矩产生的腹板在纵向加劲肋处的弯曲压应力(N/mm2);
σc2——腹板在纵向加劲肋处的横向压应力,取0.30σc(N/mm2)。
6.3.5 在受压翼缘与纵向加劲肋之间设有短加劲肋的区格[图6.3.2(d)],其局部稳定性应按本标准式(6.3.4-1)计算。该式中的σcr1仍按本标准第6.3.4条第1款计算;τcr1按本标准式(6.3.3-8)~式(6.3.3-12)计算,但将h0和a改为h1和a1,a1为短加劲肋间距;σc,cr1按本标准式(6.3.3-3)~式(6.3.3-5)计算,但式中λn,b改用下列λn,cl代替。
6.3.6 加劲肋的设置应符合下列规定:
1 加劲肋宜在腹板两侧成对配置,也可单侧配置,但支承加劲肋、重级工作制吊车梁的加劲肋不应单侧配置。
2 横向加劲肋的最小间距应为0.5h0,除无局部压应力的梁,当h0/tw≤100时,最大间距可采用2.5h0外,最大间距应为2h0。纵向加劲肋至腹板计算高度受压边缘的距离应为hc/2.5~hc/2。
3 在腹板两侧成对配置的钢板横向加劲肋,其截面尺寸应符合下列公式规定:
5 在同时采用横向加劲肋和纵向加劲肋加强的腹板中,横向加劲肋的截面尺寸除符合本条第1款~第4款规定外,其截面惯性矩Iz尚应符合下式要求:
7 用型钢(H型钢、工字钢、槽钢、肢尖焊于腹板的角钢)做成的加劲肋,其截面惯性矩不得小于相应钢板加劲肋的惯性矩。在腹板两侧成对配置的加劲肋,其截面惯性矩应按梁腹板中心线为轴线进行计算。在腹板一侧配置的加劲肋,其截面惯性矩应按加劲肋相连的腹板边缘为轴线进行计算。
8 焊接梁的横向加劲肋与翼缘板、腹板相接处应切角,当作为焊接工艺孔时,切角宜采用半径R=30mm的1/4圆弧。
6.3.7 梁的支承加劲肋应符合下列规定:
1 应按承受梁支座反力或固定集中荷载的轴心受压构件计算其在腹板平面外的稳定性;此受压构件的截面应包括加劲肋和加劲肋每侧15hwεk范围内的腹板面积,计算长度取h0;
2 当梁支承加劲肋的端部为刨平顶紧时,应按其所承受的支座反力或固定集中荷载计算其端面承压应力;突缘支座的突缘加劲肋的伸出长度不得大于其厚度的2倍;当端部为焊接时,应按传力情况计算其焊缝应力;
3 支承加劲肋与腹板的连接焊缝,应按传力需要进行计算。
6.3.2 需要配置纵向加劲肋的腹板高厚比,不是按硬性规定的界限值来确定而是根据计算需要配置,但仍然给出高厚比的限值,并按梁受压翼缘扭转受到约束与否分为两档,即170εk和150εk;在任何情况下高厚比不应超过250,以免高厚比过大时产生焊接翘曲。
6.3.3 本条基本保留了原规范的规定。由于腹板应力最大处翼缘应力也很大,后者对前者并不提供约束。将原规范式(4.3.3-2e)分母的153改为138。
式(6.3.3-1)代表弯曲应力、承压应力和剪应力共同作用下腹板发生屈曲的近似的相关公式。在设计简支吊车梁时,需要计算部位是弯矩最大部位和靠近支座的区格,弯矩最大截面,剪应力的影响比较小,支座区格弯曲应力较小。
相关公式各项的分母,在各自的正则化长细比较小的时候,弹塑性局部屈曲的承载力都能够达到各自对应的屈服强度。在最不利的均匀受压的情况下,局部屈曲的稳定系数取1.0对应的正则化长细比大约在0.7(美国AISI规范是0.673)。钢梁腹板稳定性计算的三种应力的稳定性应好于均匀受压的,稳定系数取1.0的正则化长细比应大于0.7,本条对弯曲、剪切和局部承压三种情况,分别取0.85,0.8和0.9;弹性失稳的起点位置的正则化长细比分别取1.25,1.2和1.2,弹性失稳阶段,式(6.3.3-5)、式(6.3.3-10)、式(6.3.3-15)的分子均有1.1,这同样是为了与原规范保持一定程度上的连续性。弹塑性阶段,承载力和正则化长细比的关系是直线。
6.3.4 有纵向加劲肋时,多种应力作用下的临界条件也有改变。受拉翼缘和纵向加劲肋之间的区格,相关公式和仅设横向加劲肋者形式上相同,而受压翼缘和纵向加劲肋之间的区格则在原公式的基础上对局部压应力项加上平方。这一区格的特点是高度比宽度小很多,在σc和σ(或τ)的相关曲线上凸得比较显著。单项临界应力的计算公式都和仅设横向加劲肋时一样,只是由于屈曲系数不同,正则化宽厚比的计算公式有些变化。
局部横向压应力作用下,由于纵横加劲肋及上翼缘围合而成的区格高宽比常在4以上,宜作为上下两边支承的均匀受压板看待,取腹板有效宽度为h1的2倍。当受压翼缘扭转未受到约束时,上下两端均视为铰支,计算长度为h1;扭转受到完全约束时,则计算长度取0.7h1。规范式(6.3.4-4)、式(6.3.4-5)就是这样得出的。
6.3.5 在受压翼缘与纵向加劲肋之间设置短加劲肋使腹板上部区格宽度减小,对弯曲压应力的临界值并无影响。对剪应力的临界值虽有影响,仍可用仅设横向加劲肋的临界应力公式计算,计算时以区格高度h1和宽度a1代替h0和a。影响最大的是横向局部压应力的临界值,需要用式(6.3.5-1)、式(6.3.5-2)代替式(6.3.4-2)、式(6.3.4-3)来计算λn,cl。
6.3.6 为使梁的整体受力不致产生人为的侧向偏心,加劲肋最好两侧成对配置。但考虑到有些构件不得不在腹板一侧配置横向加劲肋的情况(见图4),故本条增加了一侧配置横向加劲肋的规定。其外伸宽度应大于按公式(6.3.6-1)算得值的1.2倍,厚度应大于其外伸宽度的1/15。其理由如下:
本条还规定了短加劲肋最小间距为0.75h1,这是根据a/h2=1/2、h2=3h1、a1=a/2等常用边长之比的情况导出的。
为了避免三向焊缝交叉,加劲肋与翼缘板相接处应切角,但直接受动力荷载的梁(如吊车梁)的中间加劲肋下端不宜与受拉翼缘焊接,一般在距受拉翼缘不少于50mm处断开,故对此类梁的中间加劲肋,本条第8款关于切角尺寸的规定仅适用于与受压翼缘相连接处。
说明 返回
顶部
- 上一节:6.2 受弯构件的整体稳定
- 下一节:6.4 焊接截面梁腹板考虑屈曲后强度的计算
目录导航
- 前言
- 1 总则
- 2 术语和符号
- 2.1 术语
- 2.2 符号
- 3 基本设计规定
- 3.1 一般规定
- 3.2 结构体系
- 3.3 作用
- 3.4 结构或构件变形及舒适度的规定
- 3.5 截面板件宽厚比等级
- 4 材料
- 4.1 钢材牌号及标准
- 4.2 连接材料型号及标准
- 4.3 材料选用
- 4.4 设计指标和设计参数
- 5 结构分析与稳定性设计
- 5.1 一般规定
- 5.2 初始缺陷
- 5.3 一阶弹性分析与设计
- 5.4 二阶P-△弹性分析与设计
- 5.5 直接分析设计法
- 6 受弯构件
- 6.1 受弯构件的强度
- 6.2 受弯构件的整体稳定
- 6.3 局部稳定
- 6.4 焊接截面梁腹板考虑屈曲后强度的计算
- 6.5 腹板开孔要求
- 6.6 梁的构造要求
- 7 轴心受力构件
- 7.1 截面强度计算
- 7.2 轴心受压构件的稳定性计算
- 7.3 实腹式轴心受压构件的局部稳定和屈曲后强度
- 7.4 轴心受力构件的计算长度和容许长细比
- 7.5 轴心受压构件的支撑
- 7.6 单边连接的单角钢
- 8 拉弯、压弯构件
- 8.1 截面强度计算
- 8.2 构件的稳定性计算
- 8.3 框架柱的计算长度
- 8.4 压弯构件的局部稳定和屈曲后强度
- 8.5 承受次弯矩的桁架杆件
- 9 加劲钢板剪力墙
- 9.1 一般规定
- 9.2 加劲钢板剪力墙的计算
- 9.3 构造要求
- 10 塑性及弯矩调幅设计
- 10.1 一般规定
- 10.2 弯矩调幅设计要点
- 10.3 构件的计算
- 10.4 容许长细比和构造要求
- 11 连 接
- 11.1 一般规定
- 11.2 焊缝连接计算
- 11.3 焊缝连接构造要求
- 11.4 紧固件连接计算
- 11.5 紧固件连接构造要求
- 11.6 销轴连接
- 11.7 钢管法兰连接构造
- 12 节点
- 12.1 一般规定
- 12.2 链接板节点
- 12.3 梁柱连接节点
- 12.4 铸钢节点
- 12.5 预应力索节点
- 12.6 支座
- 12.7 柱脚
- 13 钢管链接节点
- 13.1 一般规定
- 13.2 构造要求
- 13.3 圆钢管直接焊接节点和局部加劲节点的计算
- 13.4 矩形钢管直接焊接节点和局部加劲节点的计算
- 14 钢与混凝土组合梁
- 14.1 一般规定
- 14.2 组合梁设计
- 14.3 抗剪连接件的计算
- 14.4 挠度计算
- 14.5 负弯矩区裂缝宽度计算
- 14.6 纵向抗剪计算
- 14.7 构造要求
- 15 钢管混凝土柱及节点
- 15.1 一般规定
- 15.2 矩形钢管混凝土柱
- 15.3 圆形钢管混凝土柱
- 15.4 钢管混凝土柱与钢梁连接节点
- 16 疲劳计算及防脆断设计
- 16.1 一般规定
- 16.2 疲劳计算
- 16.3 构造要求
- 16.4 防脆断设计
- 17 钢结构抗震性能化设计
- 17.1 一般规定
- 17.2 计算要点
- 17.3 基本抗震措施
- 18 钢结构防护
- 18.1 抗火设计
- 18.2 防腐蚀设计
- 18.3 隔热
- 附录A 常用建筑结构体
- A.1 单层钢结构
- A.2 多高层钢结构
- A.3 大跨度钢结构
- 附录B 结构或构件的变形容许值
- B.1 受弯构件的挠度容许值
- B.2 结构的位移容许值
- 附录C 梁的整体稳定系数
- 附录D 轴心受压构件的稳定系数
- 附录E 柱的计算长度系数
- 附录F 加劲钢板剪力墙的弹性屈曲临界应力
- F.1 仅设置竖向加劲的钢板剪力墙
- F.2 设置水平加劲的钢板剪力墙
- F.3 同时设置水平和竖向加劲肋的钢板剪力墙
- 附录G 桁架节点板在斜腹杆压力作用下的稳定计算
- 附录H 无加劲钢管直接焊接节点刚度判别
- 附录J 钢与混凝土组合梁的疲劳验算
- 附录K 疲劳计算的构件和连接分类
- 本标准用词说明
- 引用标准名录
-
笔记需登录后才能查看哦~